Solving Some Integral and Fractional Differential Equations via Neutrosophic Pentagonal Metric Space
Abstract
:1. Introduction
- To introduce the notion of neutrosophic pentagonal MS;
- To prove several fixed-point theorems for contraction mappings;
- Show the existence of a unique solution of an integral equation;
- Show the existence of a unique solution of a fractional differential equation.
2. Preliminaries
- (1)
- ;
- (2)
- ★ is continuous;
- (3)
- ;
- (4)
- , ∀ ;
- (5)
- If and , ∀ , then .
- (1)
- , ∀ ;
- (2)
- • is continuous;
- (3)
- , ∀ ;
- (4)
- , ∀ ;
- (5)
- If and , with , then .
- (a)
- iff ;
- (b)
- ;
- (c)
- ;
- (i)
- ;
- (ii)
- ∀, ⇔;
- (iii)
- ;
- (iv)
- ;
- (v)
- is continuous on left.
- (I)
- ;
- (II)
- ;
- (III)
- ;
- (IV)
- ;
- (V)
- ;
- (VI)
- is a non-decreasing function of and ;
- (VII)
- ;
- (VIII)
- ;
- (IX)
- ;
- (X)
- ;
- (XI)
- is a non-increasing function of and ,
- (1)
- ;
- (2)
- ;
- (3)
- ∀, ⇔;
- (4)
- ;
- (5)
- ;
- (6)
- is continuous and ;
- (7)
- ;
- (8)
- ∀, ⇔;
- (9)
- ;
- (10)
- ;
- (11)
- is continuous and ;
- (12)
- ;
- (13)
- ∀, ⇔;
- (14)
- ;
- (15)
- ;
- (16)
- is continuous and ;
- (17)
- If , then ;
3. Main Results
- (i)
- ;
- (ii)
- ;
- (iii)
- ∀, ⇔;
- (iv)
- ;
- (v)
- ;
- (vi)
- is continuous and ;
- (vii)
- ;
- (viii)
- ∀, ⇔;
- (ix)
- ;
- (x)
- ;
- (xi)
- is continuous and ;
- (xii)
- ;
- (xiii)
- ∀, ⇔;
- (xiv)
- ;
- (xv)
- ;
- (xvi)
- is continuous and ;
- (xvii)
- If , then and .
- (a)
- a convergent if exists such that
- (b)
- a Cauchy sequence, if for each , exists such thatIf every Cauchy sequence convergent in , then is said to be complete NPMS.
4. Applications
4.1. Application to Fredholm Integral Equation
4.2. Application to Fractional Differential Equations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, I.; Michálek, J. Fuzzy metric and statistical metric spaces. Kybernetika 1875, 11, 336–344. [Google Scholar]
- Azmi, F.M. Fixed-Point Results for α-ψ-fuzzy Contractive Mappings on Fuzzy Double-Controlled Metric Spaces. Symmetry 2023, 15, 716. [Google Scholar] [CrossRef]
- Rome, B.-E.; Sarwar, M.; Shah, K.; Abdalla, B.; Abdeljawad, T. Some generalized fixed point results of Banach and Ćirić type in extended fuzzy b-metric spaces with applications. AIMS Math. 2022, 7, 14029–14050. [Google Scholar] [CrossRef]
- Batul, S.; Mehmood, F.; Hussain, A.; Sagheer, D.-e-S.; Aydi, H.; Mukheimer, A. Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Math. 2022, 7, 5925–5942. [Google Scholar] [CrossRef]
- Rakić, D.; Mukheimer, A.; Došenović, T.; Mitrović, Z.D.; Radenović, S. On some new fixed point results in fuzzy b-metric spaces. J. Inequal. Appl. 2020, 2020, 14. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Sezen, M.S. Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial Differ. Equ. 2020, 37, 583–593. [Google Scholar] [CrossRef]
- Rafi, M.; Noorani, M.S.M. Fixed theorems on intuitionistic fuzzy metric space. Iran. J. Fuzzy Syst. 2006, 3, 23–29. [Google Scholar]
- Sintunavarat, W.; Kumam, P. Fixed Theorems for a Generalized Intuitionistic Fuzzy Contraction in Intuitionistic Fuzzy Metric Spaces. Thai J. Math. 2012, 10, 123–135. [Google Scholar]
- Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2005, 29, 1073–1078. [Google Scholar] [CrossRef]
- Javed, K.; Uddin, F.; Aydi, H.; Arshad, M.; Ishtiaq, U.; Alsamir, M. On Fuzzy b-Metric-Like Spaces. J. Funct. Spaces 2021, 2021, 6615976. [Google Scholar] [CrossRef]
- Mohamad, A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2007, 34, 1689–1695. [Google Scholar] [CrossRef]
- Dey, D.; Saha, M. An extension of Banach fixed point theorem in fuzzy metric space. Bol. Soc. Parana. Mat. 2014, 32, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Uddin, F.; Ishtiaq, U.; Hussain, A.; Javed, K.; Al Sulami, H.; Ahmed, K. Neutrosophic Double Controlled Metric Spaces and Related Results with Application. Fractal Fract. 2022, 6, 318. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Rehman, S.U.; Jabeen, S.; Khan, S.U.; Jaradat, M.M.M. Some α-ϕ-Fuzzy Cone Contraction Results with Integral Type Application. J. Math. 2021, 2021, 1566348. [Google Scholar]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- Konwar, W. Extension of fixed results in intuitionistic fuzzy b-metric spaces. J. Intell. Fuzzy Syst. 2020, 39, 7831–7841. [Google Scholar] [CrossRef]
- Kirişci, M.; Simsek, N. Neutrosophic metric spaces. Math. Sci. 2020, 14, 241–248. [Google Scholar] [CrossRef]
- Simsek, N.; Kirişci, M. Fixed point theorems in Neutrosophic metric spaces. Sigma J. Eng. Nat. Sci. 2019, 10, 221–230. [Google Scholar]
- Sowndrarajan, S.; Jeyarama, M.; Smarandache, F. Fixed point Results for Contraction Theorems in Neutrosophic Metric Spaces. Neutrosophic Sets. Syst. 2020, 36, 23. [Google Scholar]
- Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 1979, 67, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Saleem, N.; Isik, H.; Furqan, S.; Park, C. Fuzzy double controlled metric spaces. J. Intell. Fuzzy Syst. 2021, 40, 9977–9985. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, G.; Subbarayan, P.; Mitrović, Z.D.; Aloqaily, A.; Mlaiki, N. Solving Some Integral and Fractional Differential Equations via Neutrosophic Pentagonal Metric Space. Axioms 2023, 12, 758. https://doi.org/10.3390/axioms12080758
Mani G, Subbarayan P, Mitrović ZD, Aloqaily A, Mlaiki N. Solving Some Integral and Fractional Differential Equations via Neutrosophic Pentagonal Metric Space. Axioms. 2023; 12(8):758. https://doi.org/10.3390/axioms12080758
Chicago/Turabian StyleMani, Gunaseelan, Poornavel Subbarayan, Zoran D. Mitrović, Ahmad Aloqaily, and Nabil Mlaiki. 2023. "Solving Some Integral and Fractional Differential Equations via Neutrosophic Pentagonal Metric Space" Axioms 12, no. 8: 758. https://doi.org/10.3390/axioms12080758
APA StyleMani, G., Subbarayan, P., Mitrović, Z. D., Aloqaily, A., & Mlaiki, N. (2023). Solving Some Integral and Fractional Differential Equations via Neutrosophic Pentagonal Metric Space. Axioms, 12(8), 758. https://doi.org/10.3390/axioms12080758