A New Class of Quantile Regression Ratio-Type Estimators for Finite Population Mean in Stratified Random Sampling
Abstract
:1. Introduction
2. Quantile Regression Model
3. Suggested Estimators
4. Efficiency Comparisons
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lohr, S.L. Sampling: Design and Analysis; CRC Press: Boston, MA, USA, 2021. [Google Scholar]
- Kish, L. Survey Sampling; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Zaman, T. An efficient exponential estimator of the mean under stratified random sampling. Math. Popul. Stud. 2017, 28, 104–121. [Google Scholar] [CrossRef]
- Thompson, S.K. Sampling, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Cochran, W.G. Sampling Technique; John Wiley and Son: New York, NY, USA, 1977. [Google Scholar]
- Kadilar, C.; Cingi, H. A new ratio estimator in stratified random sampling. Commun. Stat.-Theory Methods 2005, 34, 597–602. [Google Scholar] [CrossRef]
- Prasad, B. Some improved ratio type estimators of population mean and ratio in finite population sample surveys. Commun. Stat.-Theory Methods 1989, 18, 379–392. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. A new estimator of population mean in stratified sampling. Commun. Stat.-Theory Methods 2006, 35, 1201–1209. [Google Scholar] [CrossRef]
- Bedi, P.K. Efficient utilization of auxiliary information at estimation stage. Biom. J. 1996, 38, 973–976. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Singh, R.D.; Chaudhry, M.K. Exponential ratio type estimators in stratified random sampling. arXiv 2013, arXiv:1301.5086. [Google Scholar]
- Bahl, S.; Tuteja, R. Ratio and product type exponential estimators. J. Inf. Optim. Sci. 1991, 12, 159–164. [Google Scholar] [CrossRef]
- Kadilar, C.; Cingi, H. Ratio estimators in stratified random sampling. Biom. J. 2003, 45, 218–225. [Google Scholar] [CrossRef]
- Shahzad, U.; Hanif, M.; Koyuncu, N.; Luengo, A.G. A family of ratio estimators in stratified random sampling utilizing auxiliary attribute alongside the nonresponse issue. J. Stat. Theory Appl. 2019, 18, 12–25. [Google Scholar]
- Hussain, S.; Ahmad, S.; Saleem, M.; Akhtar, S. Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling. PLoS One 2020, 15, e0239098. [Google Scholar] [CrossRef]
- Muneer, S.; Khalil, A.; Shabbir, J. A parent-generalized family of chain ratio exponential estimators in stratified random sampling using supplementary variables. Commun. Stat.-Simul. Comput. 2020; in press. [Google Scholar]
- Cekim, H.O.; Kadilar, C. In-type estimators for the population variance in stratified random sampling. Commun. Stat.-Simul. Comput. 2020, 49, 1665–1677. [Google Scholar] [CrossRef]
- Kadilar, C.; Candan, M.; Cingi, H. Ratio estimators using robust regression. Hacet. J. Math. Stat. 2007, 36, 181–188. [Google Scholar]
- Subzar, M.; Bouza, C.N.; Al-Omari, A.I. Utilization of different robust regression techniques for estimation of finite population mean in SRSWOR in case of presence of outliers through ratio method of estimation. Investig. Oper. 2019, 40, 600–609. [Google Scholar]
- Zaman, T.; Bulut, H. Modified ratio estimators using robust regression methods. Commun. Stat.-Theory Methods 2019, 48, 2039–2048. [Google Scholar] [CrossRef]
- Zaman, T.; Bulut, H. Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling. Commun. Stat.-Theory Methods 2020, 49, 3407–3420. [Google Scholar] [CrossRef]
- Zaman, T. Improvement of modified ratio estimators using robust regression methods. Appl. Math. Comput. 2019, 348, 627–631. [Google Scholar] [CrossRef]
- Ali, N.; Ahmad, I.; Hanif, M.; Shahzad, U. Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Commun. Stat.-Theory Methods 2021, 50, 979–992. [Google Scholar] [CrossRef]
- Grover, L.K.; Kaur, A. An improved regression type estimator of population mean with two auxiliary variables and its variant using robust regression method. J. Comput. Appl. Math. 2021, 382, 113072. [Google Scholar] [CrossRef]
- Koç, H. Ratio-type estimators for improving mean estimation using Poisson Regression method. Commun. Stat.-Theory Methods 2021, 50, 4685–4691. [Google Scholar] [CrossRef]
- Baur, D.; Saisana, M.; Schulze, N. Modeling the effects of meteorological variables on ozone concentration: A quantile regression approach. Atmos. Environ. 2004, 38, 4689–4699. [Google Scholar] [CrossRef]
- Shahzad, U.; Hanif, M.; Sajjad, I.; Anas, M.M. Quantile regression-ratio-type estimators for mean estimation under complete and partial auxiliary information. Sci. Iran. 2022, 29, 1705–1715. [Google Scholar] [CrossRef]
- Anas, M.M.; Huang, Z.; Alilah, D.A.; Shafqat, A.; Hussain, S. Mean estimators using robust quantile regression and L-moments’ characteristics for complete and partial auxiliary information. Math. Probl. Eng. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Anas, M.M.; Huang, Z.; Shahzad, U.; Zaman, T.; Shahzadi, S. Compromised imputation based mean estimators using robust quantile regression. Commun. Stat.-Theory Methods 2022, 1–16. [Google Scholar] [CrossRef]
- Shahzad, U.; Ahmad, I.; Al-Noor, N.H.; Iftikhar, S.; Abd Ellah, A.H.; Benedict, T.J. Särndal Approach and Separate Type Quantile Robust Regression Type Mean Estimators for Nonsensitive and Sensitive Variables in Stratified Random Sampling. J. Math. 2022, 2022, 14. [Google Scholar] [CrossRef]
- Rueda, M.; Arcos, A. Improving ratio-type quantile estimates in a finite population. Stat. Pap. 2004, 45, 231–248. [Google Scholar] [CrossRef]
- Shahzad, U.; Ahmad, I.; Al-Noor, N.H.; Hanif, M.; Almanjahie, I.M. Robust estimation of the population mean using quantile regression under systematic sampling. Math. Popul. Stud. 2022, 30, 1–13. [Google Scholar] [CrossRef]
- Shahzad, U.; Al-Noor, N.H.; Afshan, N.; Alilah, D.A.; Hanif, M.; Anas, M.M. Minimum Covariance Determinant-Based Quantile Robust Regression-Type Estimators for Mean Parameter. Math. Probl. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Tareghian, R.; Rasmussen, P.F. Statistical downscaling of precipitation using quantile regression. J. Hydrol. 2013, 487, 122–135. [Google Scholar] [CrossRef]
- Chen, C.; Wei, Y. Computational issues for quantile regression. Sankhyā Indian J. Stat. 2005, 67, 399–417. [Google Scholar]
- Algamal, Z.Y.; Rasheed, K.B. Re-sampling in Linear Regression Model Using Jackknife and Bootstrap. Iraqi J. Stat. Sci. 2010, 10, 59–73. [Google Scholar] [CrossRef]
- Hao, L.; Naiman, D.Q. Quantile Regression; Sage Publications: London, UK, 2007. [Google Scholar]
- Buchinsky, M. Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research. J. Hum. Resour. 1998, 33, 88–126. Available online: https://www.mgm.gov.tr/eng/forecast-cities.aspx (accessed on 22 May 2021). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Total | ||
---|---|---|
Population size | 420 | |
Sample size | 135 | |
Population mean of | 34.98289 | |
Population mean of | 37.4703 | |
Population variance of | 703.9922 | |
Population variance of | 574.3866 | |
Population correlation coefficient between and | 0.704 |
1 | 2 | 3 | |
---|---|---|---|
140 | 140 | 140 | |
52.073 | 8.292 | 44.583 | |
39.132 | 23.597 | 49.681 | |
493.754 | 163.307 | 360.492 | |
664.912 | 105.425 | 614.283 | |
448.018 | 77.003 | 305.43 | |
0.781 | 0.587 | 0.649 | |
0.908 | 0.472 | 0.847 | |
0.0057 | 0.0014 | 0.0131 | |
15.0004 | 0.4338 | 35.8744 | |
−0.2681 | −0.013 | −0.6358 | |
0.8414 | 0.0302 | 0.6655 | |
0.0055 | 0.0418 | 0.0115 | |
15.3304 | 0.3654 | 14.7909 | |
−0.2682 | −0.1190 | −0.3772 | |
0.8700 | 0.4161 | 0.8467 | |
0.0094 | 0.0124 | 0.0214 | |
38.4669 | 3.8007 | 52.9633 | |
−0.5549 | −0.1174 | −0.9822 | |
0.9312 | 0.8083 | 1.0080 | |
0.33 | 0.33 | 0.33 |
Sample Sizes Are Equal | Sample Sizes Are Different | ||
---|---|---|---|
Estimator | Mean Square Error | Mean Square Error | |
Classical | 2.7750 | 2.2264 | |
1.3603 | 1.2831 | ||
Proposed | 0.0859 | 0.0169 | |
0.0509 | 0.0290 | ||
0.1594 | 0.0632 | ||
0.0881 | 0.1072 | ||
0.0530 | 0.0390 | ||
0.1649 | 0.1292 |
Sample Sizes Are Equal | Sample Sizes Are Different | ||||
---|---|---|---|---|---|
Relative Efficiency | |||||
0.0309 | 0.0631 | 0.0075 | 0.0131 | ||
0.0183 | 0.0374 | 0.0130 | 0.0226 | ||
0.0574 | 0.11725 | 0.0283 | 0.0492 | ||
0.0317 | 0.0648 | 0.0481 | 0.0836 | ||
0.0191 | 0.0389 | 0.0175 | 0.0303 | ||
0.0594 | 0.1212 | 0.0580 | 0.8800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koç, T.; Koç, H. A New Class of Quantile Regression Ratio-Type Estimators for Finite Population Mean in Stratified Random Sampling. Axioms 2023, 12, 713. https://doi.org/10.3390/axioms12070713
Koç T, Koç H. A New Class of Quantile Regression Ratio-Type Estimators for Finite Population Mean in Stratified Random Sampling. Axioms. 2023; 12(7):713. https://doi.org/10.3390/axioms12070713
Chicago/Turabian StyleKoç, Tuba, and Haydar Koç. 2023. "A New Class of Quantile Regression Ratio-Type Estimators for Finite Population Mean in Stratified Random Sampling" Axioms 12, no. 7: 713. https://doi.org/10.3390/axioms12070713
APA StyleKoç, T., & Koç, H. (2023). A New Class of Quantile Regression Ratio-Type Estimators for Finite Population Mean in Stratified Random Sampling. Axioms, 12(7), 713. https://doi.org/10.3390/axioms12070713