Randomly Stopped Sums with Generalized Subexponential Distribution
Abstract
:1. Introduction
2. Generalized Subexponentiality
- A d.f. of a real-valued r.v. is said to be generalized subexponential, denoted , ifwhere denote the convolution of d.f. with itself, i.e.,
3. Main Results
4. Similar Results for Related Regularity Classes
- A d.f. of a nonnegative r.v. ξ is said to be subexponential, denoted , ifA d.f. of a real-valued r.v. ξ is called subexponential if the positive part of d.f.belongs to the class .
- A d.f. of a real-valued r.v. ξ is said to be convolution equivalent with parameter , denoted , if the following requirements are satisfied:
- A d.f. of a real-valued r.v. ξ is said to be dominatedly varying, denoted , iffor all (or, equivalently, for some) ;
- A d.f. of a real-valued r.v. ξ is said to be exponential-like-tailed, denoted , iffor all .
- A d.f. of a real-valued r.v. ξ is said to be long-tailed, denoted , iffor all (or, equivalently, for some) .
5. Auxiliary Lemmas
6. Proofs of the Main Results
7. Illustration of the Results
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klüppelberg, C. Asymptotic ordering of distribution functions and convolution semigroups. Semigr. Forum 1990, 40, 77–92. [Google Scholar] [CrossRef]
- Shimura, T.; Watanabe, T. Infinite divisibility and generalized subexponentiality. Bernoulli 2005, 11, 445–469. [Google Scholar] [CrossRef]
- Baltrūnas, A.; Omey, E.; Van Gulck, S. Hazard rates and subexponential distributions. Publ. l’Institut Math. 2006, 80, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Yamamuro, K. Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 2010, 15, 44–74. [Google Scholar] [CrossRef]
- Yu, C.; Wang, Y. Tail behaviovior of supremum of a random walk when Cramér condition fails. Front. Math. China 2014, 9, 431–453. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, Y. Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables. Lith. Math. J. 2012, 52, 29–39. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y. New examples of heavy tailed O-subexponential distributions and related closure properties. Stat. Probab. Lett. 2012, 82, 427–432. [Google Scholar] [CrossRef]
- Konstantinides, D.; Leipus, R.; Šiaulys, J. A note on product-convolution for generalized subexponential distributions. Nonlinear Anal. Model. Control 2022, 27, 1054–1067. [Google Scholar] [CrossRef]
- Mikutavičius, G.; Šiaulys, J. Product convolution of generalized subexponential distributions. Mathematics 2023, 11, 248. [Google Scholar] [CrossRef]
- Chistyakov, V.P. A theorem on sums of independent, positive random variables and its applications to branching processes. Theory Probab. Appl. 1964, 9, 640–648. [Google Scholar] [CrossRef]
- Athreya, K.B.; Ney, P.E. Branching Processes; Springer: New York, NY, USA, 1972. [Google Scholar]
- Chover, J.; Ney, P.; Waigner, S. Degeneracy properties of subcritical branching processes. Ann. Probab. 1973, 1, 663–673. [Google Scholar] [CrossRef]
- Chover, J.; Ney, P.; Waigner, S. Functions of probability measures. J. d’Analyse Math. 1973, 26, 255–302. [Google Scholar] [CrossRef]
- Embrechts, P.; Goldie, C.M. On convolution tails. Stoch. Process. Their Appl. 1982, 13, 263–278. [Google Scholar] [CrossRef] [Green Version]
- Embrechts, P.; Omey, E. A property of long tailed distributions. J. Appl. Probab. 1984, 21, 80–87. [Google Scholar] [CrossRef]
- Cline, D.B.H. Intermediate regular and Π variation. Proc. Lond. Math. Soc. 1994, 68, 594–611. [Google Scholar] [CrossRef]
- Cline, D.B.H.; Samorodnitsky, G. Subexponentiality of the product of independent random variables. Stoch. Process. Their Appl. 1994, 49, 75–98. [Google Scholar] [CrossRef] [Green Version]
- Klüppelberg, C. Subexponential distributions and characterization of related classes. Probab. Theory Relat. Fields 1989, 82, 259–269. [Google Scholar] [CrossRef]
- Pakes, A.G. Convolution equivalence and infinite divisibility. J. Apll. Probab. 2004, 41, 407–424. [Google Scholar] [CrossRef]
- Rogozin, B.A. On the constant in the definition of subexponential distributions. Theory Probab. Appl. 2000, 44, 409–412. [Google Scholar] [CrossRef]
- Foss, S.; Korshunov, D. Lower limits and equivalences for convolution tails. Ann. Probab. 2007, 35, 366–383. [Google Scholar] [CrossRef] [Green Version]
- Cline, D.B.H. Convolution tails, product tails and domain of attraction. Probab. Theory Relat. Fields 1986, 72, 529–557. [Google Scholar] [CrossRef]
- Watanabe, T. The Wiener condition and the conjectures of Embrechts and Goldie. Ann. Probab. 2019, 47, 1221–1239. [Google Scholar] [CrossRef] [Green Version]
- Foss, S.; Korshunov, D.; Zachary, S. An Introduction to Heavy-Tailed and Subexponential Distributions, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events for Insurance and Finance; Springer: Berlin, Germany, 1997. [Google Scholar]
- Asmussen, S. Applied Probability and Queues, 2nd ed.; Springer: New York, MY, USA, 2003. [Google Scholar]
- Denisov, D.; Foss, S.; Korshunov, D. Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 2010, 16, 971–994. [Google Scholar] [CrossRef]
- Watanabe, T. Convolution equivalence and distribution of random sums. Probab. Theory Relat. Fields 2008, 142, 367–397. [Google Scholar] [CrossRef]
- Schmidli, H. Compound sums and subexponentiality. Bernoulli 1999, 5, 999–1012. [Google Scholar] [CrossRef]
- Pakes, A.G. Convolution equivalence and infinite divisibility: Corrections and corollaries. J. Appl. Probab. 2007, 44, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, Y.; Wang, K.; Cheng, D. Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications. Insur. Math. Econ. 2007, 40, 256–266. [Google Scholar] [CrossRef]
- Feller, W. One-sided analogues of Karamata’s regular variation. Enseign. Math. 1969, 15, 107–121. [Google Scholar]
- Seneta, E. Regularly Varying Functions. Lecture Notes in Mathematics; Springer: Berlin, Germany, 1976; Volume 508. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Tang, Q.; Yan, J. A sharp inequality for the tail probabilities of i.i.d. r.v.’s with dominatedly varying tails. Sci. China Ser. A 2002, 45, 1006–1011. [Google Scholar] [CrossRef]
- Tang, Q.; Tsitsiashvili, G. Precise estimates for the ruin probability in the finite horizon in a discrete-time risk model with heavy-tailed insurance and financial risks. Stoch. Processes Appl. 2003, 108, 299–325. [Google Scholar] [CrossRef]
- Cai, J.; Tang, Q. On max-type equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 2004, 41, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Konstantinides, D. A class of heavy tailed distributions. J. Numer. Appl. Math. 2008, 96, 127–138. [Google Scholar]
- Embrechts, P.; Goldie, C.M. On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. Ser. A 1980, 29, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Foss, S.; Korshunov, D.; Zachary, S. Convolution of long-tailed and subexponential distributions. J. Appl. Probab. 2009, 46, 756–767. [Google Scholar] [CrossRef] [Green Version]
- Leipus, R.; Šiaulys, J. Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 2012, 52, 249–258. [Google Scholar] [CrossRef]
- Danilenko, S.; Šiaulys, J. Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 2016, 113, 84–93. [Google Scholar] [CrossRef]
- Danilenko, S.; Markevičiūtė, J.; Šiaulys, J. Randomly stopped sums with exponential-type distributions. Nonlinear Anal. Model. Control 2017, 22, 793–807. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y. On the long tail property of product convolution. Lith. Math. J. 2020, 60, 315–329. [Google Scholar] [CrossRef]
- Embrechts, P.; Veraverbeke, N. Estimates for the probability of ruin with special emphasis on the posibility of large claims. Insur. Math. Econ. 1982, 1, 55–72. [Google Scholar] [CrossRef]
- Borovkov, A.A.; Borovkov, K.A. Asymptotic Analysis of Random Walks: Heavy Tailed Distributions; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Asmussen, S.; Albrecher, H. Ruin Probabilities, 2nd ed.; World Scientific: Singapore, 2010. [Google Scholar]
- Yang, Y.; Wang, K. Estimates for the tail probability of the supremum of a random walk with independent increments. Chin. Ann. Math. 2011, 32B, 847–856. [Google Scholar] [CrossRef]
- Wang, K.Y.; Yang, Y.; Yu, C.J. Estimates for the overshoot of a random walk with negative drift and non-convolution equivalent increments. Stat. Probab. Lett. 2013, 83, 1504–1512. [Google Scholar] [CrossRef]
- Beck, S.; Blath, J.; Sheutzow, M. A new class of large claim size distributions: Definition, properties, and ruin theory. Bernoulli 2015, 21, 2457–2483. [Google Scholar] [CrossRef] [Green Version]
- Aleškevičienė, A.; Leipus, L.; Šiaulys, J. Tail behavior of random sums under consistent variation with application to the compound renewal risk model. Extremes 2008, 11, 261–279. [Google Scholar] [CrossRef]
- Wang, S.J.; Gao, Y. Precise large deviations for agregate claims of a compound renewal risk model with arbitrary dependence between claims sizes and waiting times. Lith. Math. J. 2020, 62, 542–552. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.Z.; Chen, S.Y. Second order asymptotics for infinite-time ruin probability in a compound renewal risk model. Methodol. Comput. Appl. Probab. 2022, 24, 1221–1236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karasevičienė, J.; Šiaulys, J. Randomly Stopped Sums with Generalized Subexponential Distribution. Axioms 2023, 12, 641. https://doi.org/10.3390/axioms12070641
Karasevičienė J, Šiaulys J. Randomly Stopped Sums with Generalized Subexponential Distribution. Axioms. 2023; 12(7):641. https://doi.org/10.3390/axioms12070641
Chicago/Turabian StyleKarasevičienė, Jūratė, and Jonas Šiaulys. 2023. "Randomly Stopped Sums with Generalized Subexponential Distribution" Axioms 12, no. 7: 641. https://doi.org/10.3390/axioms12070641
APA StyleKarasevičienė, J., & Šiaulys, J. (2023). Randomly Stopped Sums with Generalized Subexponential Distribution. Axioms, 12(7), 641. https://doi.org/10.3390/axioms12070641