Next Article in Journal
Statistical Inference for Two Gumbel Type-II Distributions under Joint Type-II Censoring Scheme
Next Article in Special Issue
A Nonconstant Gradient Constrained Problem for Nonlinear Monotone Operators
Previous Article in Journal
Exploring Dynamic Structures in Matrix-Valued Time Series via Principal Component Analysis
Previous Article in Special Issue
Predicting Sit-to-Stand Body Adaptation Using a Simple Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Class of K-G-Type Symmetric Second Order Vector Optimization Problem

1
Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-Male Campus, Riyadh 13316, Saudi Arabia
2
Department of Mathematics, J.C. Bose University of Science and Technology, YMCA, Faridabad 121 006, India
3
Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah 23442, Saudi Arabia
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(6), 571; https://doi.org/10.3390/axioms12060571
Submission received: 24 April 2023 / Revised: 1 June 2023 / Accepted: 2 June 2023 / Published: 8 June 2023
(This article belongs to the Special Issue Optimization Models and Applications)

Abstract

:
In this paper, we present meanings of K- G f -bonvexity/K- G f -pseudobonvexity and their generalization between the above-notice functions. We also construct various concrete non-trivial examples for existing these types of functions. We formulate K- G f -Wolfe type multiobjective second-order symmetric duality model with cone objective as well as cone constraints and duality theorems have been established under these aforesaid conditions. Further, we have validates the weak duality theorem under those assumptions. Our results are more generalized than previous known results in the literature.

1. Introduction

The field of optimization theory has progressed far beyond anyone’s expectations. Due to its wide variety of uses, it has made its way into all disciplines of science and engineering. When approximations are utilized, one of the most important practical applications of duality is that it provides bounds on the value of the objective functions because there are more factors involved, second-order duality has a greater computational benefit than first-order duality. For intriguing applications and breakthroughs in multiobjective optimization, we refer to [1], and the references cited therein. Dorn [2] presented the primary symmetric duality definition for quadratic programming in 1965. Dantzig et al. [3] and Mond [4] proposed a pair of symmetric dual Duality plays a vital role in investigating nonlinear programming problem solutions. Several writers have proposed several duality models, such as Wolfe dual [5] and Mond-Weir dual [6]. Nanda and Das [7] introduced four different forms of duality models for the nonlinear programming problem with cone constraints. The work of Bazaraa and Goode [8] and Hanson and Mond [9] inspired these findings.
Mangasian [10] established the duality theorem in the context of a second-order dual problem in nonlinear programming, where none of the constraints imposed convexity restrictions on all functions. Mond [11] introduced second-order symmetric dual models and established second-order symmetric duality theorems under second-order convexity conditions for the first time. In mathematical programming, Hasnson [12] defined the second-order invexity of a differentiable function and studied it. In 1999, Mishra [13] proposed a pair of second-order vector symmetric dual multiobjective models for arbitrary cones based on the Wolfe and Mond-Weir types. In addition 2006, ref. [14] a couple of Mond–Weir type second-order symmetric duality multiobjective calculations for cone second-order pseudoinvex and emphatically cone second-order pseudoinvex algorithm were presented. A couple of Mond–Weir type second-order symmetric dual multiobjective projects over discretion cones is created under pseudoinvexity/ K ˘ F -convexity assumptions by Gulati [15], which is as:
Primal(MP):
K-minimize ψ ( ι , κ ) subject to κ ( λ T ψ ) ( ι , κ ) + κ κ ( w T ϕ ) ( ι , κ ) p C 2 * , κ T κ ( λ T ψ ) ( ι , κ ) + κ κ ( w T ϕ ) ( ι , κ ) p 0 , λ i n t K * , ι C 1
Dual(MD):
K-maximize ψ ( μ , ν ) subject to ι ( λ T ψ ) ( μ , ν ) + ι ι ( w T ϕ ) ( μ , ν ) p C 1 * , μ T ι ( λ T ψ ) ( μ , ν ) + ι ι ( w T ϕ ) ( μ , ν ) r 0 , λ i n t K * , ι C 2 ,
where,
(i)
R 1 R n , R 2 R m are open sets,
(ii)
ψ , ϕ : R 1 × R 2 R k is a twice differentiable function of ι and κ , is a differentiable function of ι and κ ,
(iii)
λ R k , w R q , p R m a n d r R n ,
(iv)
for i = 1,2, C i S i is a closed convex cone with non-empty interior and C i * is its positive polar cone.
Aside from them, a number of other researchers are working in this field. For additional information, see [16,17,18,19,20].
In this paper be start by defining in Section 2, K- G f -bonvexity as well as pseduobonvexity and construct non-trivial numerical examples for clear understanding the concept introduced by authors. We identify several examples lying exclusively K- G f -bonvex and not in the class of K-invex function with respect to same η already exist in the literature. We illustrate an example which is K- G f -pseudobonvex but not K- G f -bonvex with respect to same η . In the next section, we formulate a new pair of multiobjective symmetric second order K- G f -primal-dual models over arbitrary cone and drive duality results under K- G f -bonvex as well as K- G f -pseudobonvex assumptions. We, also construct a non-trivial example for validate the weak duality theorem presented in the paper. we also introduced geometry figure for clear understanding the concept through figure.

2. Preliminaries and Definitions

In this paper, we used R n for n-dimensional Euclidean space and R + n for semi-positive orthant. Also, here C 1 and C 2 used for closed convex cone R n and R m respectively, with non-void interiors. For a real-valued twice differentiable function g ( φ , ϑ ) described on an open set in R n × R m , indicate by φ g ( φ ¯ , ϑ ¯ ) the gradient vector of g with respect to a at ( φ ¯ , ϑ ¯ ) , φ φ g ( φ ¯ , ϑ ¯ ) the Hessian matrix with respect to φ an at ( φ ¯ , ϑ ¯ ) .
Throughout the paper N ˜ = { 1 , 2 , , k } , O ˜ = { 1 , 2 , , m } .
A differentiable function f : X × Y R k , η 1 : X × Y R k , η 2 : X × Y R k , G f = ( G f 1 , G f 2 , , G f k ) : R R k , G f i : I f i ( X ) R is range f i for i = N ˜ . Also, K is used for pointed convex cone with non-void interiors in R k , for ϑ , z R k and we specify cone orders with respect to K as follows:
ϑ z z ϑ K ; ϑ z z ϑ K { 0 } ; ϑ < z z ϑ i n t K .
Let f : X R k be a differentiable function defined on open set ϕ X R n and I f i ( X ) , i N ˜ be the range of f i .
Consider the following multiobjective programming problem with cone objective as well as constraints as:
(MP)     K-min f ( φ )
  subject to
φ X 0 = φ S : g ( φ ) Q .
where S R n , f : S R k , g : S R m .  Q is a closed convex cone with a non-empty interior in R m .
Definition 1
([21]). φ ¯ X 0 is a weak efficient solution of (MP), φ X such that
f ( φ ¯ ) f ( φ ) i n t K .
Definition 2
([21]). φ ¯ X 0 is an efficient solution of (MP), φ X such that
f ( φ ¯ ) f ( φ ) K { 0 } .
Now, we consider the following multiobjective programming with cone objective and cone constraints as:
(GMP)         K min G f ( f ( z ) )
  subject to z Z 0 = z S : G g ( g ( z ) ) Q .
Definition 3
([21]). z ¯ Z 0 is a weak efficient solution of (GMP), z Z 0 s.t.
G f ( f ( z ¯ ) ) G f ( f ( z ) ) i n t K .
Definition 4
([21]). z ¯ Z 0 is a efficient solution of (GMP), z Z 0 s.t. G f ( f ( z ¯ ) ) G f ( f ( z ) ) K { 0 } .
Definition 5
([21]). The positive polar cone C i * of C i (i=1,2) is defined as C i * = z : φ T z 0 , φ C 1 . Suppose that S 1 R n and S 2 R m are open sets such that
C 1 × C 2 S 1 × S 2 .
A differentiable function f : X R k and G f such that every component G f i is strictly increasing on the range of I f i .
Definition 6.
If G f and η such that φ X and p i R n , we have
{ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 ] , , G f k ( f k ( φ ) ) G f k ( f k ( δ ) ) + 1 2 p k T [ G f k ( f k ( δ ) ) φ f k ( δ ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) ] p k η T ( φ , δ ) G f k ( f k ( δ ) ) φ f k ( δ ) + G f k ( f k ( δ ) ) φ f k ( δ ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) p k } K ,
then f is K- G f -bonvex at δ X with respect to η.
Definition 7.
If G f and η such that φ X and p i R m , we have
{ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 ] , , G f k ( f k ( φ ) ) G f k ( f k ( δ ) ) + 1 2 p k T [ G f k ( f k ( δ ) ) φ f k ( δ ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) ] p k η T ( φ , δ ) G f k ( f k ( δ ) ) φ f k ( δ ) + G f k ( f k ( δ ) ) φ f k ( δ ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) p k } K ,
then f is K- G f -boncave at δ X with respect to η.
Generalized the above definitions on two variable, as follows,
Definition 8.
If and G f and η 1 such that φ X and q i R n , we have
{ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) q 1 η 1 T ( φ , δ ) [ G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + { G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) } q 1 ] , , G f k ( f k ( φ , ) ) G f k ( f k ( δ , ) ) + 1 2 q k T G f k ( f k ( δ , ) ) φ f k ( δ , ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) q k η 1 T ( φ , δ ) G f k ( f k ( δ ) ) φ f k ( δ , ) + G f k ( f k ( δ , ) ) φ f k ( δ , ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) q k } K ,
then, f is K- G f -bonvex in the first variable at δ X for fixed Y with η 1 ,
and
If G f η 2 such that ϑ Y and p i R m , we have
{ G f 1 ( f 1 ( δ , ϑ ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) ( ϑ f 1 ( δ , ) ) T + G f 1 f 1 ( δ , ) ϑ ϑ f 1 ( δ , ) p 1 η 2 T ( , ϑ ) [ G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) + { G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) } p 1 ] , , G f k ( f k ( δ , ϑ ) ) G f k ( f k ( δ , ) ) + 1 2 p k T G f k ( f k ( δ , ) ) ϑ f k ( δ , ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) p k η 2 T ( , ϑ ) G f k ( f k ( δ , ) ) ϑ f k ( δ , ) + G f k ( f k ( δ , ) ) ϑ f k ( δ , ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) p k } K ,
then, f is K- G f -bonvex in the second variable at Y for fixed δ X with η 2 .
Definition 9.
If G f and η 1 such that φ X and q i R n , we have
{ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) q 1 η 1 T ( φ , δ ) [ G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + { G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) } q 1 ] , , G f k ( f k ( φ , ) ) G f k ( f k ( δ , ) ) + 1 2 q k T G f k ( f k ( δ , ) ) φ f k ( δ , ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) q k η 1 T ( φ , δ ) G f k ( f k ( δ ) ) φ f k ( δ , ) + G f k ( f k ( δ , ) ) φ f k ( δ , ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) q k } K ,
then, f is K- G f -boncave in the first variable at δ X for fixed Y with respect to η 1 ,
and
If G f and η 2 such that ϑ Y and p i R m , we have
{ G f 1 ( f 1 ( δ , ϑ ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) p 1 η 2 T ( , ϑ ) [ G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) + { G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) } p 1 ] , , G f k ( f k ( δ , ϑ ) ) G f k ( f k ( δ , ) ) + 1 2 p k T [ G f k " ( f k ( δ , ) ) ϑ f k ( δ , ) ( ϑ f k ( δ , ) ) T η 2 T ( , ϑ ) [ G f k ( f k ( δ , ) ) ϑ f k ( δ , ) + G f k ( f k ( δ , ) ) ϑ f k ( δ , ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) p k ] } K ,
then function f is K- G f -boncave in the second variable at Y for fixed δ X with respect to η 2 .
Example 1.
Let X = [ 1 , 2 ] R ,   n = m = 1 and k = 2 . Consider f : X R 2 be defined by
f ( φ ) = f 1 ( φ ) , f 2 ( φ ) ,
where,
f 1 ( φ ) = φ s i n 1 φ , f 2 ( φ ) = c o s φ .
Next, G f : ( G f 1 , G f 2 ) : R R 2 defined by
G f 1 = t 2 , G f 2 = t 4 .
Let K = ( φ , ϑ ) ; φ 0 and ϑ 0 and η : X × X R be given by
η ( φ , δ ) = ( 1 δ 2 ) .
Now, we have to claim that f is K G f -bonvex, for this, we have driven that the following expression as
{ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) } p 1 ] , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 p 2 T [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) ] p 2 η T ( φ , δ ) [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) + { G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) } p 2 ] } K .
Let
= { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 ] , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 p 2 T [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) ] p 2 η T ( φ , δ ) G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) + G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) p 2 } .
Substituting the values of f 1 , f 2 , G f 1 , G f 2 and η, we obtain
= { φ 2 s i n 2 1 φ 2 δ 2 s i n 2 1 δ 2 + 1 2 p 2 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ ( 1 δ 2 ) [ 2 δ s i n 1 δ s i n 1 δ 1 δ c o s 1 δ + p 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ ] , c o s 4 φ c o s 4 δ + 1 2 p 2 [ 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) ] ( 1 δ 2 ) [ 4 c o s 3 δ ( s i n δ ) + p ( 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) ) ] } .
Now, we consider
Ψ = φ 2 s i n 2 1 φ 2 δ 2 s i n 2 1 δ 2 + 1 2 p 2 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ
( 1 δ 2 ) 2 δ s i n 1 δ s i n 1 δ 1 δ c o s 1 δ + p 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ .
Let us apply the following ansatz:
Ψ = Ψ 1 + Ψ 2 s a y ,
consider
Φ = { c o s 4 φ c o s 4 δ + 1 2 p 2 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ )
( 1 δ 2 ) 4 c o s 3 δ ( s i n δ ) + p 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) } K .
The above expression breaks in Φ 1 and Φ 2 (say) as follows:
Φ = Φ 1 + Φ 2 ,
where
Ψ 1 = φ 2 s i n 2 1 φ 2 δ 2 s i n 2 1 δ 2 ( 1 δ 2 ) 2 δ s i n 1 δ s i n 1 δ 1 δ c o s 1 δ .
It is easily verified from Figure 1, we have
Ψ 1 0 , φ , δ X .
Ψ 2 = 1 2 p 2 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ + p 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ .
It is clear from Figure 2, we obtain
Ψ 2 0 , δ X and p 1 10 10 , 1 .
Now,
Φ 1 = c o s 4 φ c o s 4 δ + ( 1 δ 2 ) 4 c o s 3 δ ( s i n δ ) ,
as can be seen from Figure 3.
Φ 1 0 φ , δ X ,
and
Φ 2 = 1 2 p 2 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) + p 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) .
As can be seen from Figure 4. Φ 2 0 , δ X and p 1 , p 2 [ 1 10 10 , 1 ] . (From Figure 4).
Hence, Ψ 0 and Φ 0 . This gives ψ + ϕ 0 . Thus, we can find that ( Ψ , Φ ) K .
Hence, f is K- G f -bonvex function at ( Ψ , Φ ) w.r.t. η .
We will show that f is not invex. For this it is either
f 1 ( φ ) f 1 ( δ ) η T ( φ , δ ) φ f 1 ( δ ) 0
or
f 2 ( φ ) f 2 ( δ ) η T ( φ , δ ) φ f 2 ( δ ) 0 .
Since f 1 ( φ ) f 1 ( δ ) η T ( φ , δ ) φ f 1 ( δ ) = φ s i n 1 φ δ s i n 1 δ ( 1 δ 2 ) s i n 1 δ 1 δ c o s 1 δ 0 , is not φ , δ X as can be seen from Figure 5. Also, f 2 ( φ ) f 1 ( δ ) η T ( φ , δ ) φ f 2 ( δ ) = c o s φ c o s δ + ( 1 δ 2 ) s i n δ 0 , is not φ , δ X as can be seen from Figure 6.
Therefore, from the above example, it shows that f is K- G f -bonvex, but it is not invex with respect to same η .
Definition 10.
If G f and η such that φ X and q i R n , we have
η T ( φ , δ ) { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + q 1 G f 1 ( f 1 ( δ ) ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) , , G f k ( f k ( δ ) ) φ f k ( δ ) + q k { G f k ( f k ( δ ) ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) } } K [ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) q 1 , , G f k ( f k ( φ ) ) G f k ( f k ( δ ) ) + 1 2 q k T G f k ( f k ( δ ) ) φ f k ( δ ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) q k ] K ,
then, f is G f -pseudobonvex at δ X with η.
Definition 11.
If G f and η such that φ X and q 1 R n , we have
η T ( φ , δ ) { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + q 1 G f 1 ( f 1 ( δ ) ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) , , G f k ( f k ( δ ) ) φ f k ( δ ) + q k { G f k ( f k ( δ ) ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) } } K [ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) q 1 , , G f k ( f k ( φ ) ) G f k ( f k ( δ ) ) + 1 2 q k T G f k ( f k ( δ ) ) φ f k ( δ ) ( φ f k ( δ ) ) T + G f k ( f k ( δ ) ) φ φ f k ( δ ) q k ] K ,
then f is G f -pseudoboncave at δ X with respect to η.
We generalized the above definition as follows:
Definition 12.
If G f and η 1 such that φ X and q i R n , we have
η 1 T ( φ , δ ) { G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + q 1 G f 1 ( f 1 ( δ , ) ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) , , G f k ( f k ( δ , ) ) φ f k ( δ , ) + q k G f k ( f k ( δ , ) ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) } K [ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) q 1 , , G f k ( f k ( φ , ) ) G f k ( f k ( δ , ) ) + 1 2 q k T G f k ( f k ( δ , ) ) φ f k ( δ , ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) q k ] K ,
then f is K- G f -bonvex in the first variable at δ X for fixed Y with η 1 ,
and
if G f and η 2 such that ϑ Y and p i R m , we have
η 2 T ( δ , ϑ ) { G f 1 ( f 1 ( δ , ϑ ) ) ϑ f 1 ( δ , ) + { G f 1 ( f 1 ( δ , ) ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) } p 1 , , G f k ( f k ( δ , ) ) ϑ f k ( δ , ) + p k G f k ( f k ( δ , ) ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) } K [ G f 1 ( f 1 ( δ , ϑ ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) p 1 , , G f k ( f k ( δ , ϑ ) ) G f k ( f k ( δ , ) ) + 1 2 p k T G f k ( f k ( δ , ) ) ϑ f k ( δ , ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) p k ] K ,
then f is K- G f -bonvex in the second variable at Y for fixed δ X with η 2 .
Definition 13.
If G f and η 1 such that φ X and q i R n , we have
η 1 T ( φ , δ ) { G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + q 1 G f 1 ( f 1 ( δ , ) ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) , , G f k ( f k ( δ , ) ) φ f k ( δ , ) + q k G f k ( f k ( δ , ) ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) } K [ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) q 1 , , G f k ( f k ( φ , ) ) G f k ( f k ( δ , ) ) + 1 2 q k T G f k ( f k ( δ , ) ) φ f k ( δ , ) ( φ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) φ φ f k ( δ , ) q k ] K ,
then f is K- G f -bonvex in the first variable at δ X for fixed Y with η 1 ,
and
If G f and η 2 such that ϑ Y and p i R m , we have
η 2 T ( δ , ϑ ) { G f 1 ( f 1 ( δ , ϑ ) ) ϑ f 1 ( δ , ) + G f 1 ( f 1 ( δ , ) ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) p 1 , , G f k ( f k ( δ , ) ) ϑ f k ( δ , ) + p k G f k ( f k ( δ , ) ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) } K [ G f 1 ( f 1 ( δ , ϑ ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ , ) ) ϑ f 1 ( δ , ) ( ϑ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) ϑ ϑ f 1 ( δ , ) p 1 , , G f k ( f k ( δ , ϑ ) ) G f k ( f k ( δ , ) ) + 1 2 p k T G f k ( f k ( δ , ) ) ϑ f k ( δ , ) ( ϑ f k ( δ , ) ) T + G f k ( f k ( δ , ) ) ϑ ϑ f k ( δ , ) p k ] K .
then f is K- G f -boncave in the second variable at Y for fixed δ X with respect to η 2 .
Remark 1.
If G f ( t ) = t , then above definition reduces in K η -pseudo bonvex w.r.t. η,
η T ( φ , δ ) φ f 1 ( δ ) + φ φ f 1 ( δ ) q 1 , …… , φ f k ( δ ) + φ φ f k ( δ ) q k K
f 1 ( φ ) f 1 ( δ ) + 1 2 q 1 T φ φ f 1 ( δ ) q 1 , , f k ( φ ) f k ( δ ) + 1 2 q T φ φ f k ( δ ) q k K .
Example 2.
Let X = [ 10 , 10 ] and K = ( φ , ϑ ) : φ 0 , φ ϑ . Consider the function f : X R 2 defined by
f ( φ ) = ( f 1 ( φ ) , f 2 ( φ ) ) ,
where
f 1 ( φ ) = s i n φ , f 2 ( φ ) = e φ
Define G f = ( G f 1 , G f 2 ) : R 2 R given by
G f 1 = t 2 , G f 2 = t 3 , η = φ 2 δ 2 , a n d q 1 = q 2 [ 2 , ] .
We have to claim that function f is K- G f -pseudobonvex at point δ, i.e.,
η T ( φ , δ ) { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + q 1 G f 1 ( f 1 ( δ ) ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) , G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) + q 2 { G f 2 ( f 2 ( δ ) ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) } } K { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) q 1 , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 q 2 T G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) q 2 } K .
Consider
τ = η T ( φ , δ ) { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + q 1 G f 1 ( f 1 ( δ ) ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) , G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) + q 2 G f 2 ( f 2 ( δ ) ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) } .
Putting the values of f 1 , f 2 , G f 1 , G f 2 and η, we have
τ = ( φ 2 δ 2 ) s i n 2 δ + 2 q 1 ( c o s δ s i n 2 δ ) , 3 e 3 δ + 9 e 2 δ q 2 .
At the point δ = 0 , the value of above expression becomes
τ = 2 φ 2 q 1 , 3 φ 2 ( 1 + 3 q 2 ) , q 1 = q 2 [ 2 , )
Obviously,
τ = 2 φ 2 q 1 , 3 φ 2 ( 1 + 3 q 2 ) K .
Next, consider
Ψ = { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 q 1 T { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) } q 1 , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 q 2 T { G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) } q 2 } .
Putting the values of f 1 , f 2 , G f 1 , G f 2 and η, we have
Ψ = s i n 2 φ s i n 2 δ + 1 2 q 1 2 ( 2 c o s 2 δ 2 s i n 2 δ ) , e 3 φ e 3 δ + 9 2 q 2 2 e 3 δ .
The value of above expression at the point δ = 0 , we get
Ψ = s i n 2 φ + q 1 2 , e 3 φ + 9 2 q 2 2 1 K .
From the Figure 7. We can easily observe that the value of φ-coordinate always less than ϑ-coordinate in K , so φ K .
Hence, f is K- G f -pseudobonvex at the point δ = 0 with respect to η .
Next,
{ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 ] , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 p 2 T [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) ] p 2 η T ( φ , δ ) G f 2 f 2 ( δ ) φ f 2 ( δ ) + { G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) } p 2 } K .
Let
Ψ = { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) } p 1 ] , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 p 2 T [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) ] p 2 η T ( φ , δ ) G f 2 f 2 ( δ ) φ f 2 ( δ ) + G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) p 2 } .
Substituting the values of f 1 , f 2 , G f 1 , G f 2 and η, we obtain
Ψ = s i n 2 φ s i n 2 δ + p 1 2 ( c o s 2 δ s i n 2 δ ) ( φ 2 δ 2 ) ( s i n 2 δ + 2 p 1 ( c o s δ s i n 2 δ ) ) , e 3 φ e 3 δ + 9 2 p 2 2 e 3 δ ( φ 2 δ 2 ) ( 3 e 3 δ + 9 e 2 δ p 2 ) .
At the point δ = 0 , it follows that
Ψ = s i n 2 φ + p 1 2 2 p 1 φ 2 , e 3 φ + 9 2 p 2 2 1 φ 2 ( 3 + 9 p 2 ) , p 1 = p 2 [ 2 , ) .
Take particular point φ = π 2 and p 1 = p 2 = 2 [ 2 , ) , we obtain,
Ψ = ( 4.86 , 34.80 ) K .
Hence, f is K- G f -pseudobonvex, but it is not K- G f -bonvex at δ = 0 with respect to η.
In the following example, we showed that the function f is K- G f -pseudobonvex, but it is not K- G f -bonvex function with same η .
Example 3.
Let X = 0 , π 2 and K = { ( φ , ϑ ) : φ 0 , ϑ φ } . Consider G f = ( G f 1 , G f 2 ) : R 2 R and f : X R 2 given by
f ( φ ) = ( f 1 ( φ ) , f 2 ( φ ) ) ,
where
f 1 ( φ ) = s i n φ , f 2 ( φ ) = φ ,
G f 1 = t , G f 2 = t 2 .
Define η : X × X R n given by
η ( φ , δ ) = φ δ a n d q 1 , q 2 [ 1 , ] .
Solution: In this example, we will try to derive that f is K- G f -pseudobonvex i.e.,
η T ( φ , δ ) { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + q 1 G f 1 ( f 1 ( δ ) ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) , G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) + q 2 { G f 2 ( f 2 ( δ ) ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) } } K { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) q 1 , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 q 2 T G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) q 2 } K .
Consider
Π 1 = η T ( φ , δ ) { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + q 1 G f 1 ( f 1 ( δ ) ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) , G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) + q 2 G f 2 ( f 2 ( δ ) ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) } .
Putting the values of f 1 , f 2 , G f 1 , G f 2 and η , we have
Π 1 = ( φ δ ) c o s δ , ( φ δ ) ( 2 δ + 2 q 2 ) .
The value of above expression at the point δ = 0 , we get
Π 1 = φ , 2 δ q 2 K .
Next, let
Π 2 = { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 q 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) q 1 , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 q 2 T G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 ( f 2 ( δ ) ) φ φ f 2 ( δ ) q 2 } .
Putting the values of f 1 , f 2 , G f 1 , G f 2 and η , we have
Π 2 = s i n φ s i n δ + 1 2 q 1 2 ( s i n δ ) , φ δ + q 2 2 .
After simplifying and the value at δ = 0 , it follows that
Π 2 = s i n φ , φ + q 2 2 K .
Hence, f is K- G f -pseudobonvex at the point δ = 0 with respect to η .
Next,
{ G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 ] , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 p 2 T [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) ] p 2 η T ( φ , δ ) G f 2 f 2 ( δ ) φ f 2 ( δ ) + { G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) } p 2 } K .
Let
Ψ = { G f 1 ( f 1 ( φ ) ) G f 1 ( f 1 ( δ ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) p 1 η T ( φ , δ ) [ G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) + { G f 1 ( f 1 ( δ ) ) φ f 1 ( δ ) ( φ f 1 ( δ ) ) T + G f 1 ( f 1 ( δ ) ) φ φ f 1 ( δ ) } p 1 ] , G f 2 ( f 2 ( φ ) ) G f 2 ( f 2 ( δ ) ) + 1 2 p 2 T [ G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) ] p 2 η T ( φ , δ ) G f 2 f 2 ( δ ) φ f 2 ( δ ) + G f 2 ( f 2 ( δ ) ) φ f 2 ( δ ) ( φ f 2 ( δ ) ) T + G f 2 f 2 ( δ ) φ φ f 2 ( δ ) p 2 } .
Substituting the values of f 1 , f 2 , G f 1 , G f 2 and η , we obtain
Ψ = s i n φ s i n δ + 1 2 p 1 2 ( s i n δ ) ( φ δ ) p 1 c o s δ , φ 2 + p 2 2 2 ( φ δ ) p 2 .
At the point δ = 0 , it follows that
Ψ = s i n φ p 1 φ , ( φ p 2 ) 2 K .
Hence, f is K- G f -pseudobonvex, but it is not K- G f -bonvex at δ = 0 with respect to η .

3. K - G f -Wolfe Type Second-Order Symmetric Primal-Dual Pair with Cones

The study of second-order duality is more significant due to computational advantage over first order duality as it provides tighter bounds for the objective functions, when approximation is used.
The motivated by [21,22,23,24,25,26,27] several researches in this area, we formulated a new type K- G f -Wolfe type primal dual pair, with cone objectives as well as cone constraint as follows:
Primal Problem (GWPP):
K-min L ( φ , ϑ , λ , p ) = L 1 ( φ , ϑ , λ , p ) , L 2 ( φ , ϑ , λ , p ) , L 3 ( φ , ϑ , λ , p ) , , L k ( φ , ϑ , λ , p ) , where
L i ( φ , ϑ , λ , p ) = G f i ( f i ( φ , ϑ ) ) ϑ T i = 1 k λ i [ G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) + { G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) φ , ϑ f i ( φ , ϑ ) } p i ] 1 2 i = 1 k λ i p i G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i ,
subject to
i = 1 k λ i G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) + G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i C 2 * ,
λ T e k = 1 , λ int K * , φ C 1 .
Dual Problem (GWDP):
K-max M ( δ , , λ , q ) = M 1 ( δ , , q ) , M 2 ( δ , , λ , q ) , M 3 ( δ , , λ , q ) , , M k ( δ , , λ , q ) , where
M i ( δ , , λ , q ) = G f i ( f i ( δ , ) ) δ T i = 1 k λ i [ G f i ( f i ( δ , ) ) φ f i ( δ , ) + { G f i ( f i ( δ , ) ) φ f i ( δ , ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) } q i ] 1 2 i = 1 k λ i q i G f i " ( f i ( δ , ) ) φ f i ( δ , ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i ,
subject to
i = 1 k λ i G f i ( f i ( δ , ) ) φ f i ( δ , ) + G f i ( f i ( δ , ) ) φ f i ( δ , ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i C 1 * ,
λ T e k = 1 , λ int K * , δ C 2 ,
where, for i Q ˜ ,
  • f i : R 1 × R 2 R , is a differential function of φ and ϑ , e k = ( 1 , 1 , , 1 ) T R k ,
  • q i and p i are vectors in R n and R m , respectively and λ R k .
Let V * and W * be the sets of feasible solutions of (GWPP) and (GWDP) respectively.
Theorem 1
(Weak duality). Let ( φ , ϑ , λ , p ) V * and ( δ , , λ , q ) W * . Let, for i N ˜
(i) 
f 1 ( . , ) , f 2 ( . , ) , , f k ( . , ) be K- G f i -bonvex at δ w.r.t. η 1 ,
(ii) 
f 1 ( φ , . ) , f 2 ( φ , . ) , , f k ( φ , . ) be K- G f i -boncave in ϑ w.r.t. η 2 ,
(iii) 
η 1 ( φ , δ ) + δ C 1 , ∀ ( φ , δ ) C 1 × C 2 ,
(iv) 
η 2 ( , ϑ ) + ϑ C 2 , ∀ ( , ϑ ) C 1 × C 2 ,
Then, L ( φ , ϑ , λ , p ) M ( δ , , λ , q ) K { 0 } .
Proof. 
If possible, then suppose
L ( φ , ϑ , λ , p ) M ( δ , , λ , q ) K { 0 } ,
or
{ G f 1 ( f 1 ( φ , ϑ ) ) ϑ T i = 1 k λ i G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) + G f i ( f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i 1 2 i = 1 k λ i p i T G f i ( f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i , , G f k ( f k ( φ , ϑ ) ) ϑ T i = 1 k λ i G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) + G f i ( f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i 1 2 i = 1 k λ i p i T G f i ( f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i G f 1 ( f 1 ( δ , ) ) δ T i = 1 k λ i ( G f i ( f i ( δ , ) ) φ f i ( δ , ) + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i ) 1 2 i = 1 k λ i q i T { G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f ( δ , ) ) φ φ f i ( δ , ) } q i , , G f k ( f k ( δ , ) ) δ T i = 1 k λ i ( G f i ( f i ( δ , ) ) φ f i ( δ , ) + { G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) } q i ) 1 2 i = 1 k λ i q i T G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f ( δ , ) ) φ φ f i ( δ , ) q i } K { 0 } .
Since λ int K * , we get
i = 1 k λ i { G f i ( f i ( φ , ϑ ) ) ϑ T i = 1 k λ i [ G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) + { G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) } p i ] δ T i = 1 k λ i [ G f i ( f i ( δ , ) ) φ f i ( δ , ) + { G f i ( f i ( δ , ) ) φ f i ( δ , ) ( φ f i ( δ , ) ) T } ] 1 2 i = 1 k λ i p i T G f i ( f i ( φ , ϑ ) ) ϑ f i ( φ , ϑ ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) { G f i ( f i ( δ , ) ) + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) } 1 2 i = 1 k λ i q i T G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( φ , ϑ ) q i } < 0 .
By hypothesis ( i ) and using λ int K * , we get
i = 1 k λ i { G f i ( f i ( φ , ) ) G f i ( f i ( δ , ) ) + 1 2 q i T G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) φ f i ( δ , ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i η 1 T ( φ , δ ) G f i ( f i ( δ , ) ) φ f i ( δ , ) + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) φ f i ( δ , ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i } 0 ,
Using feasibility of dual problem (GWDP) & using dual constraints with assumption ( i i i ) , it yields
η 1 ( φ , δ ) + δ T i = 1 k λ i G f i ( f i ( δ , ) ) φ f i ( δ , ) + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ f i ( δ , ) q i 0 ,
it implies that
i = 1 k λ i G f i ( f i ( φ , ) ) G f i ( f i ( δ , ) ) + 1 2 q i T G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i
δ T i = 1 k λ i G f i ( f i ( δ , ) ) φ ( f i ( δ , ) ) + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) q i .
Similarly, using hypotheses ( i i ) , ( i v ) , feasible conditions of primal problem (GWPP), dual constraint and λ i n t K * ,
we get
i = 1 k λ i G f i ( f i ( φ , ϑ ) ) G f i ( f i ( φ , ) ) + 1 2 p i T G f i ( f i ( δ , ) ) ( ϑ f i ( δ , ) ) ( ϑ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) p i
ϑ T i = 1 k λ i G f i ( f i ( δ , ) ) ϑ ( f i ( δ , ) ) + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) p i .
Now, from inequalities (6), (7) and using the fact that λ T e k = 1 , we find that
i = 1 k λ i [ G f i ( f i ( φ , ϑ ) ) ϑ T i = 1 k λ i G f i ( f i ( φ , ϑ ) ) ϑ ( f i ( φ , ϑ ) ) + G f i ( f i ( φ , ϑ ) ) ( ϑ f i ( δ , ) ) ( ϑ f i ( δ , ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) p i 1 2 i = 1 k λ i p i T G f i ( f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) ( ϑ f i ( φ , ϑ ) ) T + G f i ( f i ( φ , ϑ ) ) ϑ ϑ f i ( φ , ϑ ) G f i ( f i ( δ , ) ) δ T i = 1 k λ i G f i ( f i ( δ , ) ) φ ( f i ( δ , ) ) + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) φ φ f i ( δ , ) 1 2 δ T i = 1 k λ i q i T G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) ( φ f i ( δ , ) ) T + G f i ( f i ( δ , ) ) ( φ f i ( δ , ) ) q i ] 0 ,
we arrive at contradiction. □
Through following example, we validate the Weak duality theorem as:
Example 4.
Let n = m = 1, k = 2 , X = [ 1 , 2 ] , p [ 2 2 , 2 10 ] , q [ 10 19 , 10 19 ] , K = ( φ , ϑ ) ; φ 0 , φ ϑ and
K = ( φ , ϑ ) ; φ 0 , φ ϑ , R 1 = R 2 = R + . Let f i : R 1 × R 2 R and G f i for i = 1 , 2 . be defined as
f 1 ( φ , ϑ ) = φ + c o s ϑ , f 2 ( φ , ϑ ) = s i n ϑ , G f 1 ( t ) = t 2 , G f 2 ( t ) = t .
Further, let
η 1 ( φ , δ ) = φ δ , η 2 ( , ϑ ) = ϑ .
Assume that C 1 = C 2 = C 1 * = C 2 * = R + .
(GWPP) K -minimize L ( φ , ϑ , λ , p ) = L 1 ( φ , ϑ , λ , p ) , L 2 ( φ , ϑ , λ , p )
  Subject to constraints
λ 1 2 ( φ + c o s ϑ ) ( s i n ϑ ) + 2 s i n 2 ϑ + 2 ( φ + c o s ϑ ) ( c o s ϑ ) p 1 + λ 2 c o s ϑ p 2 s i n ϑ 0 ,
λ 1 + λ 2 = 1 , λ i int K * , φ C 1 , i = 1 , 2 .
(GWDP) K-maximize M ( δ , , λ , q ) = M 1 ( δ , , λ , q ) , M 2 ( δ , , λ , q )
  Subject to constraints
λ 1 2 ( φ + c o s ϑ ) + 2 q 1 0 ,
λ 1 + λ 2 = 1 , λ i int K * , φ C 2 , i = 1 , 2 .
(A1). f 1 ( . , ) , f 2 ( . , ) is K- G f -bonvex at δ = 0 w.r.t. η 1 ,∀ φ S 1 , i.e.,
{ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) p 1 η T ( φ , δ ) G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) p 1 , G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( δ , ) ) + 1 2 p 2 T G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) p 2
η T ( φ , δ ) G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) + G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) p 2 } K .
Consider
Ψ = { G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p 1 T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) p 1 η T ( φ , δ ) G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) p 1 , G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( δ , ) ) + 1 2 p 2 T G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) p 2
η T ( φ , δ ) G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) + G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) p 2 } .
Putting the values of f 1 , f 2 , G f 1 , G f 2 and η 1 at the point δ = 0 , and simplifying, we get
Ψ = φ 2 + 2 φ c o s + p 2 , 0 .
It is clear that
Ψ = φ 2 + 2 φ c o s + p 2 , 0 K .
(A2). f 1 ( φ , . ) , f 2 ( φ , . ) is K- G f -boncave at ϑ = 0 w.r.t. η 2 , S 2 ,
{ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( φ , ϑ ) ) + 1 2 p 1 T G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) p 1 η T ( , ϑ ) G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) + G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) p 1 , G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( φ , ϑ ) ) + 1 2 p 2 T G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) p 2
η T ( , ϑ ) G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) + G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) p 2 } K .
Let Ψ 1 = { G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( φ , ϑ ) ) + 1 2 p 1 T G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) p 1 η T ( , ϑ ) G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) + G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) p 1 , G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( φ , ϑ ) ) + 1 2 p 2 T G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) p 2
η T ( , ϑ ) G f 2 ( f 2 ( φ , ϑ ) ϑ f 2 ( φ , ϑ ) + G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) p 2 } .
Putting the values of f 1 , f 2 , G f 1 , G f 2 and η 2 at ϑ = 0 , we obtain
Ψ 1 = ( φ + c o s ) 2 ( φ + 1 ) 2 p 1 2 ( φ + 1 ) + 2 ( φ + 1 ) , s i n .
Ψ 1 = ( φ + c o s ) 2 ( φ + 1 ) 2 p 1 2 ( φ + 1 ) + 2 ( φ + 1 ) , s i n K .
(A3). η 1 ( φ , δ ) + δ C 1 , φ C 1 .
(A4). η 2 ( , ϑ ) + ϑ C 2 , C 2 .
Validation: To validate Weak duality theorem it is enough to claim that any point ( φ , 0 , λ 1 , λ 2 , p ) such that φ 0 , λ 1 + λ 2 = 1 are feasible to ( G W P P ) . Also, the points ( 0 , , λ 1 , λ 2 , q ) such that 0 , λ 1 + λ 2 = 1 are feasible to ( G W D P ) . Now, at these feasible points,
L = ( L 1 , L 2 ) = ( φ + 1 ) 2 + λ 1 p 1 2 ( φ + 1 ) , λ 1 p 1 2 ( φ + 1 ) ,
and
M = ( M 1 , M 2 ) = c o s 2 λ 1 q 1 2 , s i n λ 1 q 1 2 .
Now, calculate the value at above feasible points, we have
L ( φ , ϑ , λ , p ) M ( δ , , λ , q ) = ( φ + 1 ) 2 + λ 1 p 1 2 ( φ + 1 ) c o s 2 + λ 1 q 1 2 , λ 1 p 1 2 ( φ + 1 ) s i n + λ 1 q 1 2 K { 0 } .
In particular, the points φ , ϑ , λ 1 , λ 2 , p = 1 , 0 , 1 2 , 1 2 , 4 and δ , , λ 1 , λ 2 , q = 0 , 22 14 , 1 2 , 1 2 , 2 are feasible solutions for ( G W P P ) and ( G W D P ) , respectively. Also
L ( φ , ϑ , λ , p ) M ( δ , , λ , q ) = 22 , 17 K { 0 } .
Hence, this validate the results.
Remark 2.
Every pseudoconvex function is convex function. On the same pattern we can proof that K- G f -pseudobonvex is K- G f -bonvex with respect to same η. So, above proof of Weak duality 3.2 follows on same pattern as Theorem 1.
Theorem 2
(Weak duality). Let ( φ , ϑ , λ , p ) V * and ( δ , , λ , q ) W * . Let, For i N ˜
(i) 
f 1 ( . , ) , f 2 ( . , ) , , f k ( . , ) be K- G f -pseudobonvex at ℓ w.r.t. η 1 ,
(ii) 
f 1 ( φ , . ) , f 2 ( φ , . ) , , f k ( φ , . ) be K- G f -pseudoboncave at ϑ, w.r.t. η 2 ,
(iii) 
η 1 ( φ , δ ) + δ C 1 , ∀ ( φ , δ ) C 1 × C 2 ,
(iv) 
η 2 ( , ϑ ) + ϑ C 2 , ∀ ( , ϑ ) C 1 × C 2 ,
Then, L ( φ , ϑ , λ , p ) M ( δ , , λ , q ) K { 0 } .
Proof. 
Proof follows on same lines as Weak Duality Theorem 1. □
Example 5.
For n = m = 1, k = 2 , X = [ 2 , 3 ] , p [ 0 , 1 ] , q [ 2 , 2 10 ] , K = ( φ , ϑ ) ; φ 0 , ϑ 0 , | φ | ϑ ,
R 1 = R 2 = R + . Let f i : R 1 × R 2 R be given as
f 1 ( φ , ϑ ) = φ + ϑ 2 , f 2 ( φ , ϑ ) = 1 ϑ , G f 1 ( t ) = t 2 , G f 2 ( t ) = t .
Further, Let
η 1 ( φ , δ ) = φ δ , η 2 ( , ϑ ) = ϑ .
Assume that C 1 = C 2 = C 1 * = C 2 * = R + .
(GWPP) K -minimize L ( φ , ϑ , λ , p ) = L 1 ( φ , ϑ , λ , p ) , L 2 ( φ , ϑ , λ , p )
  Subject to constraints
λ 1 4 ϑ ( φ + ϑ 2 ) + p 1 { 8 ϑ 2 + 4 ( φ + ϑ 2 ) } λ 2 0 ,
λ 1 + λ 2 = 1 , λ i int K * , φ C 1 , i = 1 , 2 .
(GWDP) K -maximize M ( δ , , λ , q ) = M 1 ( δ , , λ , q ) , M 2 ( δ , , λ , q )
  Subject to constraints
λ 1 2 ( δ + 2 + q ) 0 ,
λ 1 + λ 2 = 1 , λ i int K * , δ C 2 , i = 1 , 2 .
(A1). f 1 ( . , ) , f 2 ( . , ) is K- G f -pseudobonvex at δ with respect to η 1 , φ R 1 , so that
η 1 T ( φ , δ ) { G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + p G f 1 ( f 1 ( δ , ) ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) ,
G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) + p G f 2 ( f 2 ( δ , ) ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) } K .
Let
Π 1 = η 1 T ( φ , δ ) { G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) + p G f 1 ( f 1 ( δ , ) ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) ,
G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) + p G f 2 ( f 2 ( δ , ) ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) } .
Next, let
Π 2 = [ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( δ , ) ) + 1 2 p T G f 1 ( f 1 ( δ , ) ) φ f 1 ( δ , ) ( φ f 1 ( δ , ) ) T + G f 1 ( f 1 ( δ , ) ) φ φ f 1 ( δ , ) p ,
G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( δ , ) ) + 1 2 p T G f 2 ( f 2 ( δ , ) ) φ f 2 ( δ , ) ( φ f 2 ( δ , ) ) T + G f 2 ( f 2 ( δ , ) ) φ φ f 2 ( δ , ) p ] .
After simplification, substituting the value of f 1 , f 2 , G f 1 , G f 2 and η 1 at δ = 0 , we get
Π 1 = ( 0 , 0 ) K Π 2 = ( φ 2 2 φ 2 + p 2 , 0 ) K .
(A2). f 1 ( φ , . ) , f 2 ( φ , . ) is K- G f -pseudoboncave at ϑ with respect to η 2 for fixed φ for all S 2 , i.e.,
η 2 T ( φ , δ ) { G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) + q G f 1 ( f 1 ( φ , ϑ ) ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) , G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) + q G f 2 ( f 2 ( φ , ϑ ) ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) } K [ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( φ , ϑ ) ) + 1 2 q T G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) q ,
G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( φ , ϑ ) ) + 1 2 q T G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) q ] K .
Let Π 3 = η 2 T ( φ , δ ) { G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) + q G f 1 ( f 1 ( φ , ϑ ) ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) ,
G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) + q G f 2 ( f 2 ( φ , ϑ ) ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) } ,
and
Π 4 = [ G f 1 ( f 1 ( φ , ) ) G f 1 ( f 1 ( φ , ϑ ) ) + 1 2 q T G f 1 ( f 1 ( φ , ϑ ) ) ϑ f 1 ( φ , ϑ ) ( ϑ f 1 ( φ , ϑ ) ) T + G f 1 ( f 1 ( φ , ϑ ) ) ϑ ϑ f 1 ( φ , ϑ ) q ,
G f 2 ( f 2 ( φ , ) ) G f 2 ( f 2 ( φ , ϑ ) ) + 1 2 q T G f 2 ( f 2 ( φ , ϑ ) ) ϑ f 2 ( φ , ϑ ) ( ϑ f 2 ( φ , ϑ ) ) T + G f 2 ( f 2 ( φ , ϑ ) ) ϑ ϑ f 2 ( φ , ϑ ) q ] .
Substituting the value of f 1 , f 2 , G f 1 , G f 2 and η 2 at the point δ = 0 and simplify, we get
Π 3 = 4 v q φ , 1 K Π 4 = 4 + 2 φ 2 , K .
(A3). η 1 ( φ , δ ) + δ C 1 , ∀ φ C 1 .
(A4). η 2 ( , ϑ ) + ϑ C 2 , ∀ C 2 .
Validation: To prove our result its enough to prove that any point φ , 0 , λ 1 , λ 2 , p such that φ 0 , λ 1 + λ 2 = 1 are feasible to ( G W P P ) . Also, the points 0 , , λ 1 , λ 2 , q such that 0 , λ 1 + λ 2 = 1 are feasible to ( G W D P ) . Now, at these feasible points,
L = L 1 , L 2 = φ 2 2 φ λ 1 p 2 , 1 2 φ λ 1 p 2
and
M = M 1 , M 2 = 4 λ 1 q 2 , 1 λ 1 q 2 .
Now at above feasible condition
L M = φ 2 2 φ λ 1 p 2 4 + λ 1 q 2 , 2 φ λ 1 p 2 + λ 1 q 2 K { 0 } .
In particular, the points φ , ϑ , λ 1 , λ 2 , p = 2 , 0 , 1 2 , 1 2 , 1 and δ , , λ 1 , λ 2 , q = 0 , 2 , 1 2 , 1 2 , 2 are
feasible for ( G W P P ) and ( G W D P ) respectively,
Now, calculate
L ( φ , ϑ , λ , p ) M ( δ , , λ , q ) = 12 , 2 K { 0 } .
Hence, this validate the Weak duality Theorem 2.
Theorem 3
(Strong duality). Let ( φ ¯ , ϑ ¯ , λ ¯ , p ¯ 1 = p ¯ 2 = p ¯ 3 = = p ¯ k ) is an efficient solution of ( G W P P ) ; fix λ = λ ¯ in ( G W D P ) such that
(i) 
for all i N ˜ , G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) is nonsingular,
(ii) 
the vector i = 1 k λ ¯ i ϑ p ¯ i { G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) } p ¯ i ∉span G f 1 ( f 1 ( φ ¯ , ϑ ¯ ) ) ϑ f 1 ( φ ¯ , ϑ ¯ ) , G f 2 ( f 2 ( φ ¯ , ϑ ¯ ) ) ϑ f 2 ( φ ¯ , ϑ ¯ ) , , G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ,
(iii) 
the set of vectors G f 1 ( f 1 ( φ ¯ , ϑ ¯ ) ) ϑ f 1 ( φ ¯ , ϑ ¯ ) , G f 2 ( f 2 ( φ ¯ , ϑ ¯ ) ) ϑ f 2 ( φ ¯ , ϑ ¯ ) , , G f k ( f k ( φ ¯ , ϑ ¯ ) ) ϑ f k ( φ ¯ , ϑ ¯ ) are linearly independent,
(iv) 
i = 1 k λ ¯ i ϑ p ¯ i { G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) } p ¯ i = 0 p ¯ i = 0 , i , and
(v) 
K is closed convex pointed cone with R + k K .
Then, ( φ ¯ , ϑ ¯ , λ ¯ , q ¯ 1 = q ¯ 2 = q ¯ 3 = = q ¯ k = 0 ) W * and L ( φ ¯ , ϑ ¯ , p ¯ ) = M ( φ ¯ , ϑ ¯ , q ¯ ) . Also, if the hypotheses of Theorem 1 or Theorem 2 are satisfied for all feasible solutions for ( G W P P ) and ( G W D P ) , then ( φ ¯ , ϑ ¯ , λ ¯ , p ¯ ) and ( φ ¯ , ϑ ¯ , λ ¯ , q ¯ ) is an efficient solution for ( G W P P ) and ( G W D P ) , respectively.
Proof. 
Since ( φ ¯ , ϑ ¯ , λ ¯ , p ¯ 1 , p ¯ 2 , p ¯ 3 , , p ¯ k ) , is an efficient solution of ( G W P P ) , there exist α K * , β C 2 and η ¯ R such that the following Fritz -John optimality condition stated by [28] are satisfied at ( φ ¯ , ϑ ¯ , λ ¯ , p ¯ 1 , p ¯ 2 , p ¯ 3 , , p ¯ k ) :
( φ φ ¯ ) T [ i = 1 k α i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) + i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ϑ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ ϑ f i ( φ ¯ , ϑ ¯ ) β ( α ¯ T e k ) ϑ ¯
+ i = 1 k λ ¯ i φ ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ i β ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ i ] 0 , φ C 1 ,
ϑ ϑ ¯ T { i = 1 k α i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) + i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) β ¯ ( α ¯ T e k ) ϑ ¯ + i = 1 k λ ¯ i ϑ ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ i β ¯ ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ i i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ )
+ ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ i ] ( α ¯ T e k ) } 0 , ϑ R m ,
G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) β ¯ ( α ¯ T e k ) ϑ ¯ + η ¯ e k + { β ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ 1 T ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ 1 , { β ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ 2 T ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T { β ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ 3 T G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ 3 , ,
β ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ 3 T G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ k = 0 ,
G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ( β ¯ ( α ¯ T e k ) ( p ¯ i + ϑ ¯ ) ) λ ¯ i = 0 , i N ˜ ,
β ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ i = 0 ,
η ¯ T λ ¯ T e k 1 = 0 ,
α ¯ , β ¯ , η ¯ 0 , α ¯ , β ¯ , η ¯ 0 .
Inequalities (31) and (32) can be rewritten in the following expressions:
i = 1 k α i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) + i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) β ¯ ( α ¯ T e k ) ϑ ¯ + i = 1 k λ ¯ i ϑ ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ i β ¯ ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ i i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ )
+ G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ i ] ( α ¯ T e k ) = 0 .
G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) β ¯ ( α ¯ T e k ) ϑ ¯ + { β ( α ¯ T e k ) ϑ ¯ + 1 2 p ¯ i T
G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ i } + η ¯ = 0 , i N ˜ .
Now, from hypothesis ( i v ) , it is given that R + k K i n t K * i n t R + k .
Obviously, λ ¯ > 0 because λ ¯ int K * .
By hypothesis ( i ) , (33) gives
β = ( α ¯ T e k ) ( p ¯ i + ϑ ¯ ) , i N ˜ .
Suppose α ¯ = 0 , then (39) yields β ¯ = 0 . Further, from (38) gives η ¯ = 0 . Now, we reach at contradiction (36). Hence, α ¯ 0 . Further, α ¯ K * R + k implies
α ¯ T e k > 0 .
Now, we have to claim that p ¯ i = 0 , i N ˜ . Using (39) and (40) in (38), we get
i = 1 k λ ¯ i ϑ 1 2 p ¯ i ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ i
= 1 μ i = 1 k α i μ λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ] ,
By hypothesis (ii), we get
i = 1 k λ ¯ i ϑ p ¯ i ( G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) ) p ¯ i = 0 .
Again, from hypothesis (iv), we have
p ¯ i = 0 , i N ˜ .
From (39) implies
β ¯ = ( α ¯ T e k ) ϑ ¯ .
Using (42) and (43) in (37), we obtain
i = 1 k α i ( α ¯ T e k ) λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) = 0 .
From hypothesis (iii), it yields
α i = ( α ¯ T e k ) λ ¯ i , i N ˜ .
Using (43) and (44) in (30), we get
( φ φ ¯ ) T i = 1 k α i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ] 0 .
Using (40), (43), (44) and (46) in (30), we find that
( φ φ ¯ ) T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ] 0 , φ C 1 .
Let φ C 1 . Then, φ + φ ¯ C 1 and inequality (47) gives that
φ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ] 0 , φ C 1 .
Therefore,
i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ] C 1 * .
Also, from (44), we obtain
ϑ ¯ = β ¯ α ¯ T e k C 2 .
Therefore, ( φ ¯ , ϑ ¯ , λ ¯ , q ¯ 1 = q ¯ 2 = q ¯ 3 = = q ¯ k = 0 ) satisfies the constraint of (GWDP) and is therefore a feasible solution for the dual problem (GWDP).
Now, letting φ = 0 and φ = 2 φ ¯ in (47), we obtain
φ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) = 0 .
Further, from (34), (40), (43) and (44), we get
ϑ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) = 0 .
Therefore, using (43), (51) and (52), we obtain
( G f 1 ( f 1 ( φ ¯ , ϑ ¯ ) ) ϑ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ i 1 2 i = 1 k λ i p ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ i ] , , G f k ( f k ( φ ¯ , ϑ ¯ ) ) ϑ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) p ¯ i ] 1 2 i = 1 k λ i p ¯ i { G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) ( ϑ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ ϑ f i ( φ ¯ , ϑ ¯ ) } p ¯ i ] ) = ( G f 1 ( f 1 ( φ ¯ , ϑ ¯ ) ) φ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i 1 2 i = 1 k λ i q ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i ] , , G f k ( f k ( φ ¯ , ϑ ¯ ) ) φ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i ] 1 2 i = 1 k λ i q ¯ i { G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) } q ¯ i ] ) .
This shows that the objective values are equal.
Finally, we have to claim that ( φ ¯ , ϑ ¯ , λ ¯ , q ¯ 1 = q ¯ 2 = q ¯ 3 = = q ¯ k = 0 ) is an efficient solution of ( G W D P ) .
If possible, then suppose that ( φ ¯ , ϑ ¯ , λ ¯ , q ¯ 1 = q ¯ 2 = q ¯ 3 = = q ¯ k = 0 ) is not an efficient solution of ( G W D P ) , then there exist ( δ ¯ , ¯ , λ ¯ , q ¯ 1 = q ¯ 2 = q ¯ 3 = = q ¯ k = 0 ) is efficient solution of ( G W D P ) such that
( G f 1 ( f 1 ( φ ¯ , ϑ ¯ ) ) φ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i 1 2 i = 1 k λ i q ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i ] , , G f k ( f k ( φ ¯ , ϑ ¯ ) ) φ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i ] 1 2 i = 1 k λ i q ¯ i { G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) } q ¯ i ] G f 1 ( f 1 ( δ ¯ , ¯ ) ) δ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( δ ¯ , ¯ ) + { G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) } q ¯ i ] 1 2 i = 1 k λ i q ¯ i G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) q ¯ i ] , , G f k ( f k ( δ ¯ , ¯ ) ) δ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) + G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) q ¯ i ] 1 2 i = 1 k λ i q ¯ i { G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) } q ¯ i ] ) K { 0 } .
As
φ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) = ϑ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) a n d p ¯ i = 0 , i N ˜ , ( G f 1 ( f 1 ( φ ¯ , ϑ ¯ ) ) ϑ ¯ T i = 1 k λ ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) ϑ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i 1 2 i = 1 k λ i q ¯ i G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i ] , , G f k ( f k ( φ ¯ , ϑ ¯ ) ) φ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) q ¯ i ] 1 2 i = 1 k λ i q ¯ i { G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( φ ¯ , ϑ ¯ ) ( φ f i ( φ ¯ , ϑ ¯ ) ) T + G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ φ f i ( φ ¯ , ϑ ¯ ) } q ¯ i ] G f 1 ( f 1 ( δ ¯ , ¯ ) ) δ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( φ ¯ , ϑ ¯ ) ) φ f i ( δ ¯ , ¯ ) + G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) q ¯ i ] 1 2 i = 1 k λ i q ¯ i G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) q ¯ i ] , , G f k ( f k ( δ ¯ , ¯ ) ) δ ¯ T i = 1 k λ ¯ i [ G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) + G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) q ¯ i ] 1 2 i = 1 k λ i q ¯ i { G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) } q ¯ i ] ) K { 0 } ,
which contradicts the Weak duality Theorem 1 or Theorem 2. Hence, completes the proof. □
Theorem 4
(Converse duality). Let ( δ ¯ , ¯ , λ ¯ , q ¯ ) is an efficient solution of ( G W D P ) ; fix λ = λ ¯ in ( G W P P ) such that
(i) 
for all i { 1 , 2 , , k } , G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) is non singular,
(ii) 
i = 1 k λ ¯ i φ q ¯ i { G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) } q ¯ i span G f 1 ( f 1 ( δ ¯ , ¯ ) ) φ f 1 ( δ ¯ , ¯ ) , G f 2 ( f 2 ( δ ¯ , ¯ ) ) φ f 2 ( δ ¯ , ¯ ) , G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) .
(iii) 
the set of vectors G f 1 ( f 1 ( δ ¯ , ¯ ) ) φ f 1 ( δ ¯ , ¯ ) , G f 2 ( f 2 ( δ ¯ , ¯ ) ) φ f 2 ( δ ¯ , ¯ ) , , G f k ( f k ( δ ¯ , ¯ ) ) φ f k ( δ ¯ , ¯ ) are linearly independent,
(iv) 
i = 1 k λ ¯ i ϑ q ¯ i G f i ( f i ( δ ¯ , ¯ ) ) φ f i ( δ ¯ , ¯ ) ( φ f i ( δ ¯ , ¯ ) ) T + G f i ( f i ( δ ¯ , ¯ ) ) φ φ f i ( δ ¯ , ¯ ) q ¯ i = 0 q ¯ i = 0 , i ,
(v) 
K is closed convex pointed cone with R + k K .
Then, ( δ ¯ , ¯ , λ ¯ , p ¯ = 0 ) is a feasible solution for ( G W P P ) and the objective values of ( G W D P ) and ( G W P P ) are equal. Furthermore, if the hypotheses of Theorem 1 or Theorem 2 are satisfied for all feasible solutions of ( G W D P ) and ( G W P P ) , then ( δ ¯ , ¯ , λ ¯ , p ¯ = 0 ) is an optimal solution of ( G W P P ) . Also, if the hypotheses of Theorem 1 or Theorem 2 are satisfied for all feasible solutions for ( G W D P ) and ( G W P P ) , then ( δ ¯ , ¯ , λ ¯ , q ¯ ) and ( δ ¯ , ¯ , λ ¯ , p ¯ ) is an efficient solution for ( G W D P ) and ( G W P P ) , respectively.
Proof. 
It follows on the lines of Theorem 3. □

4. Conclusions

In this paper, we have presented a novel generalized group of definitions and illustrated various non-trivial numerical examples for existing such type of functions. Numerical examples have also been illustrated to justify the weak duality theorem. Furthermore, we have studied a new class of K- G f -Wolfe type primal-dual model with cone objective as well as constraint and proved duality theorem under K- G f -bonvexity and K- G f -pseudobonvexity. This work can further be extended to higher order symmetric fractional programming problem and variational control problem over cones. This will be feature task for the researchers.

Author Contributions

All authors contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Chinchuluun, A.; Pardalos, P.M. A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 2007, 154, 29–50. [Google Scholar] [CrossRef]
  2. Dorn, W.S. A symmetric dual theorem for quadratic programming. J. Oper. Res. Soc. Jpn. 1960, 2, 93–97. [Google Scholar]
  3. Dantzig, G.B.; Eisenberg, E.; Cottle, R.W. Symmetric dual non-linear programs. Pac. J. Math. 1965, 15, 809–812. [Google Scholar] [CrossRef] [Green Version]
  4. Mond, B. A symmetric dual theorem for non-linear programs. Q. J. Appl. Math. 1965, 23, 265–269. [Google Scholar] [CrossRef] [Green Version]
  5. Mangasarian, O.L. Nonlinear Programming; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
  6. Mond, B.; Weir, T. Generalized concavity and duality. Gen. Concavity Optim. Econ. 1981, 263–279. [Google Scholar]
  7. Nanda, S.; Das, L.N. Pseudo-invexity and duality in nonlinear programming. Eur. J. Oper. Res. 1996, 88, 572–577. [Google Scholar] [CrossRef]
  8. Bazaraa, M.S.; Goode, J.J. On symmetric duality in nonlinear programming. Oper. Res. 1973, 21, 1–9. [Google Scholar] [CrossRef]
  9. Hanson, M.A.; Mond, B. Further generalization of convexity in mathematical programming. J. Inf. Optim. Sci. 1982, 3, 25–32. [Google Scholar] [CrossRef]
  10. Mangasarian, O.L. Second and higher order duality in non-linear programming. J. Math. Anal. Appl. 1975, 51, 607–620. [Google Scholar] [CrossRef] [Green Version]
  11. Mond, B. Second order duality for non-linear programs. Opsearch 1974, 11, 90–99. [Google Scholar]
  12. Hanson, M.A. Second order invexity and duality in mathematical programming. Opsearch 1993, 30, 313–320. [Google Scholar]
  13. Mishra, S.K. Multiobjective second order symmetric duality with cone constraints. Eur. J. Oper. Res. 2000, 126, 675–682. [Google Scholar] [CrossRef]
  14. Mishra, S.K.; Lai, K.K. Second order symmetric duality in multiobjective programming involving generalized cone-invex functions. Eur. J. Oper. Res. 2007, 178, 20–26. [Google Scholar] [CrossRef]
  15. Gulati, T.R. Mond-Weir type second-order symmetric duality in multiobjective programming over cones. Appl. Math. Lett. 2010, 23, 466–471. [Google Scholar] [CrossRef] [Green Version]
  16. Dhingra, V.; Kailey, N. Optimality and duality for second-order interval-valued variational problems. J. Appl. Math. Comput. 2021, 68, 3147–3162. [Google Scholar] [CrossRef]
  17. Dar, B.A.; Jayswal, A.; Singh, D. Optimality, duality and saddle point analysis for interval-valued nondifferentiable multiobjective fractional programming problems. Optimization 2021, 70, 1275–1305. [Google Scholar] [CrossRef]
  18. García-Alonso, C.R.; Pérez-Naranjo, L.M.; Fernández-Caballero, J.C. Multiobjective evolutionary algorithms to identify highly autocorrelated areas: The case of spatial distribution in financially compromised farms. Ann. Oper. Res. 2014, 219, 187–202. [Google Scholar] [CrossRef]
  19. Yang, X.M.; Yang, X.Q.; Teo, K.L.; Hou, S.H. Second order symmetric duality in non-differentiable multiobjective programming with F-convexity. Eur. J. Oper. Res. 2005, 164, 406–416. [Google Scholar] [CrossRef]
  20. Yang, X.M.; Yang, X.Q.; Teo, K.L.; Hou, S.H. Multiobjective second-order symmetric duality with F-convexity. Eur. J. Oper. Res. 2005, 165, 585–591. [Google Scholar] [CrossRef]
  21. Jayswal, A.; Prasad, A.K. Second order symmetric duality in nondifferentiable multiobjective fractional programming with cone convex functions. J. Appl. Math. Comput. 2014, 45, 15–33. [Google Scholar] [CrossRef]
  22. Chuong, T.D. Second-order cone programming relaxations for a class of multiobjective convex polynomial problems. Ann. Oper. Res. 2020, 311, 1017–1033. [Google Scholar] [CrossRef]
  23. Dubey, R.; Mishra, L.N.; Ali, R. Special class of second order nondifferentiable duality problems with (G,α)-pseudobonvexity assumptions. Mathematics 2019, 7, 763. [Google Scholar] [CrossRef] [Green Version]
  24. Dubey, R.; Mishra, V.N.; Tomar, P. Duality relations for second-order programming problem under (G,α)-bonvexity. Asian-Eur. J. Math. 2020, 13, 2050044. [Google Scholar] [CrossRef]
  25. Dubey, R.; Mishra, V.N.; Karateke, S. A class of second order nondifferentiable symmetric duality relations under generalized assumptions. J. Math. Comput. Sci. 2020, 21, 120–126. [Google Scholar] [CrossRef] [Green Version]
  26. Jayswal, A.; Jha, S. Second order symmetric duality in fractional variational problems over cone constraints. Yugosl. J. Oper. Res. 2018, 28, 39–57. [Google Scholar]
  27. Kapoor, M. Vector optimization over cones involving support functions using generalized (ϕ,ρ)-convexity. Opsearch 2017, 54, 351–364. [Google Scholar] [CrossRef]
  28. Kaur, A.; Sharma, M.K. Higher order symmetric duality for multiobjective fractional programming problems over cones. Yugosl. J. Oper. Res. 2021, 32, 29–44. [Google Scholar] [CrossRef]
Figure 1. Ψ 1 = φ 2 s i n 2 1 φ 2 δ 2 s i n 2 1 δ 2 ( 1 δ 2 ) 2 δ s i n 1 δ s i n 1 δ 1 δ c o s 1 δ .
Figure 1. Ψ 1 = φ 2 s i n 2 1 φ 2 δ 2 s i n 2 1 δ 2 ( 1 δ 2 ) 2 δ s i n 1 δ s i n 1 δ 1 δ c o s 1 δ .
Axioms 12 00571 g001
Figure 2. Ψ 2 = 1 2 p 2 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ + p 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ .
Figure 2. Ψ 2 = 1 2 p 2 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ + p 2 s i n 1 δ 1 δ c o s 1 δ 2 + 2 δ s i n 1 δ 1 δ 3 s i n 1 δ .
Axioms 12 00571 g002
Figure 3. Φ 1 = c o s 4 φ c o s 4 δ + ( 1 δ 2 ) 4 c o s 3 δ ( s i n δ ) .
Figure 3. Φ 1 = c o s 4 φ c o s 4 δ + ( 1 δ 2 ) 4 c o s 3 δ ( s i n δ ) .
Axioms 12 00571 g003
Figure 4. Φ 2 = 1 2 p 2 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) + p 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) .
Figure 4. Φ 2 = 1 2 p 2 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) + p 12 c o s 2 δ ( s i n δ ) 2 + 4 c o s 3 δ ( c o s δ ) .
Axioms 12 00571 g004
Figure 5. φ s i n 1 φ δ s i n 1 δ ( 1 δ 2 ) s i n 1 δ 1 δ c o s 1 δ .
Figure 5. φ s i n 1 φ δ s i n 1 δ ( 1 δ 2 ) s i n 1 δ 1 δ c o s 1 δ .
Axioms 12 00571 g005
Figure 6. c o s φ c o s δ + ( 1 δ 2 ) s i n δ .
Figure 6. c o s φ c o s δ + ( 1 δ 2 ) s i n δ .
Axioms 12 00571 g006
Figure 7. s i n 2 φ + 4 c o s 2 φ , e 3 φ + 17 .
Figure 7. s i n 2 φ + 4 c o s 2 φ , e 3 φ + 17 .
Axioms 12 00571 g007
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Swarup, C.; Kumar, R.; Dubey, R.; Fathima, D. New Class of K-G-Type Symmetric Second Order Vector Optimization Problem. Axioms 2023, 12, 571. https://doi.org/10.3390/axioms12060571

AMA Style

Swarup C, Kumar R, Dubey R, Fathima D. New Class of K-G-Type Symmetric Second Order Vector Optimization Problem. Axioms. 2023; 12(6):571. https://doi.org/10.3390/axioms12060571

Chicago/Turabian Style

Swarup, Chetan, Ramesh Kumar, Ramu Dubey, and Dowlath Fathima. 2023. "New Class of K-G-Type Symmetric Second Order Vector Optimization Problem" Axioms 12, no. 6: 571. https://doi.org/10.3390/axioms12060571

APA Style

Swarup, C., Kumar, R., Dubey, R., & Fathima, D. (2023). New Class of K-G-Type Symmetric Second Order Vector Optimization Problem. Axioms, 12(6), 571. https://doi.org/10.3390/axioms12060571

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop