# A Nonconstant Gradient Constrained Problem for Nonlinear Monotone Operators

## Abstract

**:**

## 1. Introduction

## 2. Results

**Theorem**

**1.**

**Theorem**

**2.**

**Theorem**

**3.**

## 3. Preliminary Results

**Theorem**

**4**

**.**Assume that the composite mapping $(F,G):S\to \mathbb{R}\times Y$ is convex-like with respect to product cone ${\mathbb{R}}_{+}\times C$ in $\mathbb{R}\times Y$, $\mathbb{K}$ is nonempty and the ordering cone C has a nonempty interior $int\left(C\right)$. If the primal problem (11) is solvable and the generalized Slater condition is satisfied, namely there is a vector $\overline{v}\in S$ with $G\left(\overline{v}\right)\in -int\left(C\right)$, then the dual problem (12) is also solvable and the extremal values of the two problems are equal. Moreover, if u is the optimal solution to problem (11) and $\overline{\nu}\in {C}^{\ast}$ is a solution to problem (12), it follows that

**Theorem**

**5**

**.**Under the same assumptions as in Theorem 4, if the ordering cone C is closed, then a point $(u,\overline{\nu})\in S\times {C}^{\ast}$ is a saddle point of the Lagrange functional $\mathcal{L}(v,\nu )$, namely

**Theorem**

**6.**

**Theorem**

**7**

**.**Under the same assumptions as in Theorem 6, ${v}_{0}\in \mathbb{K}$ solves problem (16) if and only if there exist ${\lambda}^{\ast}\in {C}^{\ast}$ and ${\mu}^{\ast}\in {Z}^{\ast}$ such that $({x}_{0},{\lambda}^{\ast},{\mu}^{\ast})$ is a saddle point of the Lagrange functional, namely

**Theorem**

**8.**

**Proof.**

## 4. The Equivalence of the Two Variational Problems

## 5. Lagrange Multipliers

## 6. Discussions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Von Mises, R. Three remarks on the theory of the ideal plastic body. In Reissner Anniversary Volume; Edwards: Ann Arbor, MI, USA, 1949. [Google Scholar]
- Caffarelli, L.A.; Friedman, A. The free boundary for elastic-plastic torsion problems. Trans. Am. Math. Soc.
**1979**, 252, 65–97. [Google Scholar] [CrossRef] - Lanchon, H. Solution du probleme de torsion élastoplastic d’une bare cylindrique de section quelconque. C. R. Acad. Sci. Paris Ser. A
**1969**, 114, 791–794. [Google Scholar] - Ting, T.W. Elastic-plastic torsion of a square bar. Trans. Am. Math. Soc.
**1966**, 113, 369–401. [Google Scholar] [CrossRef] - Brezis, H. Moltiplicateur de Lagrange en Torsion Elasto-Plastique. Arch. Rational Mech. Anal.
**1972**, 49, 32–40. [Google Scholar] [CrossRef] - Glowinski, R.; Lions, J.L.; Tremolieres, R. Numerical Analysis of Variational Inequalities; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Brezis, H.; Sibony, M. Equivalence de Deux Inequation Variationnelles et Application. Arch. Rational Mech. Anal.
**1971**, 41, 254–265. [Google Scholar] [CrossRef] - Chiadó-Piat, V.; Percivale, D. Generalized Lagrange multipliers in elastoplastic torsion. Differ. Equ.
**1994**, 114, 570–579. [Google Scholar] [CrossRef] [Green Version] - Daniele, P.; Giuffrè, S.; Maugeri, A.; Raciti, F. Duality theory and applications to unilateral problems. J. Optim. Theory Appl.
**2014**, 162, 718–734. [Google Scholar] [CrossRef] - Giuffrè, S.; Maugeri, A. New results on infinite dimensional duality in elastic-plastic torsion. Filomat
**2012**, 26, 1029–1036. [Google Scholar] [CrossRef] - Giuffrè, S.; Maugeri, A. A Measure-type Lagrange Multiplier for the Elastic-Plastic Torsion. Nonlinear Anal.
**2014**, 102, 23–29. [Google Scholar] [CrossRef] - Giuffrè, S.; Maugeri, A.; Puglisi, D. Lagrange multipliers in elastic-plastic torsion problem for nonlinear monotone operators. Differ. Equ.
**2015**, 259, 817–837. [Google Scholar] - Figalli, A.; Shahgholian, H. An overview of unconstrained free boundary problems. Philos. Trans. R. Soc.
**2015**, 373, 20140281. [Google Scholar] [CrossRef] [PubMed] - Evans, L. A second order elliptic equation with gradient constraint. Commun. Partial Differ. Equ.
**1979**, 4, 555–572. [Google Scholar] [CrossRef] - Cimatti, G. The plane stress problem of Ghizetti in elastoplasticity. Appl. Math. Optim.
**1976**, 3, 15–26. [Google Scholar] [CrossRef] - Ishii, H.; Koike, S. Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Commun. Partial Differ. Equ.
**1983**, 8, 317–346. [Google Scholar] - Jensen, R. Regularity for elastoplastic type variational inequalities. Indiana Univ. Math. J.
**1983**, 32, 407–423. [Google Scholar] [CrossRef] - Wiegner, M. The C
^{1,1}-character of solutions of second order elliptic equations with gradient constraint. Commun. Partial Differ. Equ.**1981**, 6, 361–371. [Google Scholar] [CrossRef] - Giuffrè, S. Lagrange multipliers and non-constant gradient constrained problem. Differ. Equ.
**2020**, 269, 542–562. [Google Scholar] [CrossRef] - Santos, L. Variational problems with non-constant gradient constraints. Port. Math.
**2002**, 59, 205–248. [Google Scholar] - Santos, L. Lagrange multipliers and transport densities. J. Math. Pures Appl.
**2017**, 108, 592–611. [Google Scholar] - Treu, G.; Vornicescu, M. On the equivalence of two variational problems. Calc. Var.
**2000**, 11, 307–319. [Google Scholar] [CrossRef] - Giuffrè, S.; Marcianò, A. Lagrange Multipliers and Nonlinear Variational Inequalities with Gradient Constraints. Philos. Trans. R. Soc. A
**2022**, 380, 20210355. [Google Scholar] [CrossRef] [PubMed] - Stampacchia, G. Variational inequalities. In Proceedings of the Nato Advanced Study Institute. Theory and Applications of Monotone Operators, Venice, Italy, 17–30 June 1968; pp. 101–192. [Google Scholar]
- Hartman, P.; Stampacchia, G. On some nonlinear elliptic differential functional equations. Acta Math.
**1966**, 115, 271–310. [Google Scholar] [CrossRef] - Lions, P.L. Generalized Solutions for Hamilton-Jacobi Equations; Pitman Advanced Publishing Program: London, UK, 1982. [Google Scholar]
- Ceng, L.C.; Wen, C.F.; Liou, Y.C.; Yao, J.C. A General Class of Differential Hemivariational Inequalities Systems in Reflexive Banach Spaces. Mathematics
**2021**, 9, 3173. [Google Scholar] [CrossRef] - Baranovskii, E.S. Steady flows of an Oldroyd fluid with threshold slip. Commun. Pure Appl. Anal.
**2019**, 18, 735–750. [Google Scholar] - Baranovskii, E.S. On Flows of Bingham-Type Fluids with Threshold Slippage. Adv. Math. Phys.
**2017**, 2017, 7548328. [Google Scholar] [CrossRef] [Green Version] - Zhao, J.; He, J.; Migórski, S.; Dudek, S. An inverse problem for Bingham type fluids. J. Comput. Appl. Math.
**2022**, 404, 113906. [Google Scholar] [CrossRef] - Pascale, L.D.; Evans, L.C.; Pratelli, A. Integral estimates for transport densities. Bull. Lond. Math. Soc.
**2004**, 36, 383–395. [Google Scholar] [CrossRef] [Green Version] - Igbida, N. Equivalent formulations for Monge-Kantorovich equation. Nonlinear Anal.
**2009**, 71, 3805–3813. [Google Scholar] [CrossRef] - Jahn, J. Introduction to the Theory of Nonlinear Optimization; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Rodriguez, J.F. Obstacle Problems in Mathematical Physics; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Brezis, H.; Stampacchia, G. Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. Fr.
**1968**, 96, 53–180. [Google Scholar] [CrossRef] [Green Version] - Donato, M.B. The infinite dimensional Lagrange multiplier rule for convex optimization problems. J. Funct. Anal.
**2011**, 261, 2083–2093. [Google Scholar] [CrossRef] [Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Giuffrè, S.
A Nonconstant Gradient Constrained Problem for Nonlinear Monotone Operators. *Axioms* **2023**, *12*, 605.
https://doi.org/10.3390/axioms12060605

**AMA Style**

Giuffrè S.
A Nonconstant Gradient Constrained Problem for Nonlinear Monotone Operators. *Axioms*. 2023; 12(6):605.
https://doi.org/10.3390/axioms12060605

**Chicago/Turabian Style**

Giuffrè, Sofia.
2023. "A Nonconstant Gradient Constrained Problem for Nonlinear Monotone Operators" *Axioms* 12, no. 6: 605.
https://doi.org/10.3390/axioms12060605