Scheme Processing of Singularities in Quantum Computing and Genetics
Abstract
:1. Introduction
2. Theory
2.1. The Character Variety of a Finitely Generated Group and a Groebner Basis
2.2. Singularities of an Algebraic Surface
Simple Singularities
2.3. Arbitrary Singularities
2.4. Kodaira–Enriques Classification
A Singular Surface
3. Scheme Processing in Quantum Computing Based on an Akbulut Cork
3.1. A Short Account of Magic States for Quantum Computing
3.2. Brief Introduction to 4-Manifolds
3.3. Akbulut Cork
3.4. The Manifold Mediating the Akbulut Cobordism between Exotic Manifolds V and W
3.5. The Character Variety for an Akbulut Cork W
Formal Desingularization of the Surface
3.6. The Character Variety for the Mediating Manifold
4. Scheme Processing in Topological Quantum Computing
5. Scheme Processing in microRNAs
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Planat, M.; Minarovjech, M.; Saniga, M. Ramanujan sums analysis of long-period sequences and 1/f noise. EPL 2009, 85, 40005. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity, 1st ed.; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Character Variety. Available online: https://en.wikipedia.org/wiki/Character_variety (accessed on 1 January 2022).
- Bullock, D. Rings of SL2(C)-characters and the Kauffman bracket skein module. CM Helv. 1997, 72, 521–542. [Google Scholar]
- Gröbner Basis. Available online: https://en.wikipedia.org/wiki/Gröbner_basis (accessed on 1 August 2022).
- ADE Singularity. Available online: https://ncatlab.org/nlab/show/ADE+singularity (accessed on 1 August 2022).
- Reid, M. Undergraduate Commutative Algebra; London Mathematical Society Student Texts; Cambridge University Press: Cambridge, MA, USA, 1995; Volume 29. [Google Scholar]
- Hartshorne, R. Algebraic Geometry; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1977; Volume 52. [Google Scholar]
- Scheme (Mathematics). Available online: https://en.wikipedia.org/wiki/Scheme_(mathematics) (accessed on 1 May 2022).
- Planat, M.; Chester, D.; Amaral, M.; Irwin, K. Fricke topological qubits. Quant. Rep. 2022, 4, 523–532. [Google Scholar] [CrossRef]
- Planat, M.; Amaral, M.M.; Irwin, K. Algebraic morphology of DNA–RNA transcription and regulation. Preprints 2022. [Google Scholar] [CrossRef]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Quantum Computation and Measurements from an Exotic Space-Time R4. Symmetry 2020, 12, 736. [Google Scholar] [CrossRef]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Group geometrical axioms for magic states of quantum computing. Mathematics 2019, 7, 948. [Google Scholar] [CrossRef] [Green Version]
- Python Code to Compute Character Varieties. Available online: http://math.gmu.edu/~slawton3/Main.sagews (accessed on 1 May 2021).
- Bosma, W.; Cannon, J.J.; Fieker, C.; Steel, A. (Eds.) Handbook of Magma Functions, 2.23 ed.; University of Sydney: Sydney, NSW, Australia, 2017; 5914p. [Google Scholar]
- Goldman, W.M. Trace coordinates on Fricke spaces of some simple hyperbolic surfaces. Eur. Math. Soc. Zürich 2009, 13, 611–684. [Google Scholar]
- Inaba, M.; Iwasaki, K.; Saito, M.H. Dynamics of the sixth Painlevé equation. arXiv 2005, arXiv:math.AG/0501007. [Google Scholar]
- Beck, T.; Schicho, J. Adjoint computation for hypersurfaces using formal desingularizations. J. Algebra 2018, 320, 3984–3996. [Google Scholar] [CrossRef] [Green Version]
- Schicho, J. Rational parametrization of surfaces. J. Symb. Comput. 1998, 26, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Enriques Kodaira Classification. Available online: https://en.wikipedia.org/wiki/Enriques-Kodaira_classification (accessed on 1 January 2022).
- Bravyi, S.; Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 2005, 71, 022316. [Google Scholar] [CrossRef] [Green Version]
- Veitch, V.; Mousavian, S.A.; Gottesman, D.; Emerson, J. The Resource Theory of Stabilizer Computation. New J. Phys. 2014, 16, 013009. [Google Scholar] [CrossRef]
- Akbulut, S. 4-Manifolds; Oxford Graduate Texts in Mathematics; Oxford University Press: Oxford, UK, 2016; Volume 25. [Google Scholar]
- Gompf, R.E.; Stipsicz, A.I. 4-Manifolds and Kirby Calculus; Graduate Studies in Mathematics; American Mathematical Society: Providence, Rhode Island, 1999; Volume 20. [Google Scholar]
- Scorpian, A. The Wild World of 4-Manifolds; American Mathematical Society: Providence, Rhode Island, 2011. [Google Scholar]
- Akbulut, S. A fake compact contractible 4-manifold. J. Diff. Geom. 1991, 33, 335–356. [Google Scholar] [CrossRef]
- Akbulut, S. An exotic 4-manifold. J. Diff. Geom. 1991, 33, 357–361. [Google Scholar] [CrossRef]
- Akbulut, S.; Durusoy, S. An involution acting nontrivially on Heegard-Floer homology. In Geometry and Topology of Manifolds; Fields Institute Communication, American Mathematical Society: Providence, RI, USA, 2005; Volume 47, pp. 1–9. [Google Scholar]
- Planat, M. Geometry of contextuality from Grothendieck’s coset space. Quantum Inf. Process. 2015, 14, 2563–2575. [Google Scholar] [CrossRef]
- Medley, C.M.; Panzade, G.; Zinovyeva, A.Y. MicroRNA strand selection: Unwinding the rules. WIREs RNA 2021, 12, e1627. [Google Scholar] [CrossRef]
- Dawson, O.; Piccinini, A.M. miR-155-3p: Processing by-product or rising star in immunity and cancer? Open Biol. 2022, 12, 220070. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaonu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucl. Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- miRBase: The microRNA Database. Available online: https://www.mirbase.org/ (accessed on 1 November 2022).
- Fromm, B.; Billipp, T.; Peck, L.E.; Johansen, M.; Tarver, J.E.; King, B.L.; Newcomb, J.M.; Sempere, L.F.; Flatmark, K.; Hovig, E.; et al. A uniform system for the annotation of human microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 2015, 23, 213–242. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Cai, Y.; Paii, P.M.; Ren, X.; Xia, Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front. Pharmacol. 2021, 12, 629611. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.M.J.; Trevelyan, C.J.; Tyurner, N.A. MicroRNA-214 in health and disease. Cells 2021, 23, 3274. [Google Scholar] [CrossRef] [PubMed]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Informationally complete characters for quark and lepton mixings. Symmetry 2020, 12, 1000. [Google Scholar] [CrossRef]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Fang, F.; Irwin, K. Complete quantum information in the DNA genetic code. Symmetry 2020, 12, 1993. [Google Scholar] [CrossRef]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Fang, F.; Chester, D.; Irwin, K. Character varieties and algebraic surfaces for the topology of quantum computing. Symmetry 2022, 14, 915. [Google Scholar] [CrossRef]
- Catren, G.; Cukierman, F. Grothendieck’s theory of schemes and the algebra–geometry duality. Synthese 2022, 200, 234. [Google Scholar] [CrossRef]
- Decker, W.; Greuel, G.M. History of Singular and its relation to Zariski’s multiplicity conjecture. arXiv 2012, arXiv:2103.00525. [Google Scholar]
- Singular. Available online: https://www.singular.uni-kl.de (accessed on 1 January 2023).
- Asselmeyer-Maluga, T.; Król, J.; Wilms, A. Big bang and topology. Symmetry 2022, 14, 1887. [Google Scholar] [CrossRef]
- Meijer, D.K.F.; Raggett, S. Quantum Physics in Consciousness Studies. Available online: https://www.deeplook.ir/wp-content/uploads/2016/07/Quantum-Ph-rev-def-2.pdf (accessed on 1 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planat, M.; Amaral, M.M.; Chester, D.; Irwin, K.
Planat M, Amaral MM, Chester D, Irwin K.
Planat, Michel, Marcelo M. Amaral, David Chester, and Klee Irwin.
2023. "
Planat, M., Amaral, M. M., Chester, D., & Irwin, K.
(2023).