LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm
Abstract
:1. Introduction
2. Geometry of the Porous Cavity
3. Mathematical Formulations in Computation
3.1. Macroscopic Variables for Natural Convection in RB-MHD Flow in Porous Media
- Here,
- is the fluid density,
- is the thermal diffusivity,
- is the porosity,
- is the cold temperature,
- is the hot temperature,
- is the electrical conductivity,
- is the dynamic viscosity,
- H is the height of the cavity,
- B is the magnetic field strength,
- is the angle of an applied magnetic field,
- is the thermal expansion coefficient,
- is the gravity acting downward along the y-axis,
- is the Darcy number,
- is the Hartmann number,
- is the temperature gradient between the top (hot) and bottom (cold) walls ,
3.2. LBEs for Heat Transfer and Fluid Flow
3.3. Boundary Conditions
3.3.1. Boundary Conditions for Fluid Flow
- where m and n represent the domain’s lattice for length and height, respectively.
3.3.2. Thermal Boundary Conditions
- where, m and are the boundary lattice and the lattice inside the enclosure near the boundary, respectively.
3.4. Rate of Heat Transfer
3.5. LM Algorithm
3.6. Code Convergence Criteria
4. Materials and Methods
5. Results
5.1. Effect of Numerical Parameters on Streamlines
5.2. Isothermal Changes
5.3. Predicting from Number and
5.3.1. Development of Correlation and Surface Analysis
Empirical Parameters | Fitting Values |
f | 5.26782 |
a | −0.07321 |
b | −0.03499 |
c | 3.43333 |
d | 0.000162 |
Statistical Accuracy Indicators | Values |
0.897 | |
p | < |
5.3.2. Cross-Validation with Literature
5.4. Correlations among , Numbers, and Numbers under Constant Porosity
5.4.1. 3D Fitting Curves and Statistical Parameters
5.4.2. Independent Validation
5.5. Equation to Predict under Variable Porosity
5.5.1. 3D Fitting over a Planar Surface
5.5.2. Validation Result
6. Discussion
6.1. Significance of the Study
6.2. Factors Affecting the Accuracy of the Equations
6.3. Future Recommendations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LBM | Lattice Boltzmann method |
MHD | Magnetohydrodynamics |
RB | Rayleigh–Bénard |
LM | Levenberg–Marquardt |
2D | Two-dimensional |
Ha | Hartmann |
Ra | Rayleigh |
Darcy | Da |
ANN | Artificial Neural Network |
Nu | Nusselt |
HPC | High-performance computing |
AI | Artificial intelligence |
ML | Machine learning |
NLSM | Nonlinear least squares minimization |
TLBM | Thermal LBM |
BGK | Bhatnagar–Gross–Krook |
SRT | Single-relaxation times |
DF | Distribution functions |
Nomenclature | |
English symbols | |
a, b, c, d, e, f | Fitting parameters for LM-obtained equations |
B | Magnitude of magnetic field |
Lattice speed | |
Speed of sound | |
Expected outcome | |
Discrete velocities | |
Distribution function for flow fields | |
Equilibrium distribution function | |
Force terms | |
Force term for MHD | |
Force term for porous media | |
Buoyancy term | |
Distribution function for temperature fields | |
Gravitational force acting in y-direction | |
Thermal equilibrium function | |
H | Height of the cavity |
K | Permeability |
m | Lattice on the boundary |
N | Sample number |
n | Iteration index |
Nusselt number | |
Average Nusselt number | |
t | Time |
Time interval | |
T | Temperature |
Temperature difference | |
Cold temperature | |
Hot temperature | |
v | Velocity component |
Solution of the interpolation | |
Random example for the output network | |
z | Number of anticipated outcome from the network |
Greek symbols | |
Thermal diffusivity | |
Optimization field matrix | |
Thermal expansion coefficient | |
Porosity | |
Mean-squared network error | |
Dynamic viscosity | |
Kinematic viscosity | |
Weighting factor | |
Angle of inclination | |
Either velocity or temperature in the convergence | |
Fluid density | |
Electrical conductivity | |
Dimensionless angle of inclination | |
Adjustment parameter in each iteration cycle |
References
- Benhamou, J.; Jami, M. Three-dimensional numerical study of heat transfer enhancement by sound waves using mesoscopic and macroscopic approaches. Heat Transf. 2022, 51, 3892–3919. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H.; Adams, N.A. Mesoscopic lattice Boltzmann modeling of the liquid-vapor phase transition. Phys. Rev. Lett. 2021, 126, 244501. [Google Scholar] [CrossRef] [PubMed]
- Buzzicotti, M.; Tauzin, G. Inertial range statistics of the entropic lattice Boltzmann method in three-dimensional turbulence. Phys. Rev. E 2021, 104, 015302. [Google Scholar] [CrossRef]
- Kefayati, G. An immersed boundary-lattice Boltzmann method for thermal and thermo-solutal problems of Newtonian and non-Newtonian fluids. Phys. Fluids 2020, 32, 073103. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, B.; An, X.; Wang, Y.; Zhou, X.; Li, W. Phase-field-based lattice Boltzmann model for ternary fluid flows considering the wettability effect. Appl. Math. Model. 2022, 103, 195–220. [Google Scholar] [CrossRef]
- Islam, M.; Hasan, M.F.; Bhowmick, S.; Kamrujjaman, M.; Molla, M.M. GPU-optimized LBM-MRT Simulation of Free Convection and Entropy Generation of Non-Newtonian Power-law Nanofluids in a Porous Enclosure at REV scale. Int. J. Amb. Energy 2022, 1–33. [Google Scholar] [CrossRef]
- Jalali, A.; Amiri Delouei, A.; Khorashadizadeh, M.; Golmohamadi, A.; Karimnejad, S. Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: Temperature-dependent viscosity. J. Appl. Comput. Mech. 2020, 6, 307–319. [Google Scholar]
- Afra, B.; Delouei, A.A.; Mostafavi, M.; Tarokh, A. Fluid-structure interaction for the flexible filament’s propulsion hanging in the free stream. J. Mol. Liq. 2021, 323, 114941. [Google Scholar] [CrossRef]
- Zarei, A.; Karimipour, A.; Isfahani, A.H.M.; Tian, Z. Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation. Phys. A Stat. Mech. Appl. 2019, 535, 122453. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Wang, M.; Feng, Y.; Pande, G.; Zhao, T. A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials. Int. J. Num. Analyt. Meth. Geomech. 2018, 42, 1405–1424. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Huang, F.; Thévenin, D. Lattice Boltzmann model for simulation of flow in intracranial aneurysms considering non-Newtonian effects. Phys. Fluids 2022, 34, 073105. [Google Scholar] [CrossRef]
- An, S.; Zhan, Y.; Yao, J.; Yu, H.W.; Niasar, V. A greyscale volumetric lattice Boltzmann method for upscaling pore-scale two-phase flow. Adv. Water Res. 2020, 144, 103711. [Google Scholar] [CrossRef]
- Rahman, A.; Nag, P.; Molla, M.M. Non-Newtonian effects on MHD thermosolutal free convection and entropy production of nanofluids in a rectangular enclosure using the GPU-based mesoscopic simulation. Waves Random Complex Media 2022, 1–33. [Google Scholar] [CrossRef]
- Shao, X.; Santasmasas, M.C.; Xue, X.; Niu, J.; Davidson, L.; Revell, A.J.; Yao, H.D. Near-wall modeling of forests for atmosphere boundary layers using lattice Boltzmann method on GPU. Eng. Appl. Comput. Fluid Mech. 2022, 16, 2142–2155. [Google Scholar] [CrossRef]
- Ahmed, T.; Hassan, S.; Hasan, M.F.; Molla, M.M.; Taher, M.A.; Saha, S.C. Lattice Boltzmann Simulation of Magnetic Field Effect on Electrically Conducting Fluid at Inclined Angles in Rayleigh-Bénard Convection. Energy Eng. 2021, 118, 15–36. [Google Scholar] [CrossRef]
- Nemati, M.; Sani, H.M.; Jahangiri, R.; Chamkha, A.J. MHD natural convection in a cavity with different geometries filled with a nanofluid in the presence of heat generation/absorption using lattice Boltzmann method. J. Therm. Anal. Cal. 2022, 147, 9067–9081. [Google Scholar] [CrossRef]
- Himika, T.A.; Hassan, S.; Hasan, M.; Molla, M. Lattice Boltzmann Simulation of MHD Rayleigh–Bénard Convection in Porous Media. Arab. J. Sci. Eng. 2020, 45, 9527–9547. [Google Scholar] [CrossRef]
- Hartono, A.D.; Sasaki, K.; Sugai, Y.; Nguele, R. Computational Performance of Disparate Lattice Boltzmann Scenarios under Unsteady Thermal Convection Flow and Heat Transfer Simulation. Computation 2021, 9, 65. [Google Scholar] [CrossRef]
- Trunk, R.; Weckerle, T.; Hafen, N.; Thäter, G.; Nirschl, H.; Krause, M.J. Revisiting the homogenized lattice Boltzmann method with applications on particulate flows. Computation 2021, 9, 11. [Google Scholar] [CrossRef]
- Weichman, P.B.; Marston, J.B. Statistical Equilibrium Principles in 2D Fluid Flow: From Geophysical Fluids to the Solar Tachocline. Entropy 2022, 24, 1389. [Google Scholar] [CrossRef]
- Manna, N.K.; Biswas, N. Magnetic force vectors as a new visualization tool for magnetohydrodynamic convection. Int. J. Therm. Sci. 2021, 167, 107004. [Google Scholar] [CrossRef]
- Arshad, M.; Hussain, A.; Elfasakhany, A.; Gouadria, S.; Awrejcewicz, J.; Pawłowski, W.; Elkotb, M.A.; Alharbi, F.M. Magneto-hydrodynamic flow above exponentially stretchable surface with chemical reaction. Symmetry 2022, 14, 1688. [Google Scholar] [CrossRef]
- Lebedev, S.; Frank, A.; Ryutov, D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities. Rev. Modern Phys. 2019, 91, 025002. [Google Scholar] [CrossRef]
- Habibishandiz, M.; Saghir, M. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms. Therm. Sci. Eng. Prog. 2022, 30, 101267. [Google Scholar] [CrossRef]
- Ali, H.M. Heat transfer augmentation of porous media (metallic foam) and phase change material based heat sink with variable heat generations: An experimental evaluation. Sustain. Energy Technol. Assess. 2022, 52, 102218. [Google Scholar] [CrossRef]
- Yaseen, M.; Rawat, S.K.; Shafiq, A.; Kumar, M.; Nonlaopon, K. Analysis of heat transfer of mono and hybrid nanofluid flow between two parallel plates in a Darcy porous medium with thermal radiation and heat generation/absorption. Symmetry 2022, 14, 1943. [Google Scholar] [CrossRef]
- Tayebi, T. Analysis of the local non-equilibria on the heat transfer and entropy generation during thermal natural convection in a non-Darcy porous medium. Int. Comm. Heat Mass Transf. 2022, 135, 106133. [Google Scholar] [CrossRef]
- Chaabane, R.; Kolsi, L.; Jemni, A.; Alshammari, N.K.; D’Orazio, A. Numerical study of the Rayleigh–Bénard convection in two-dimensional cavities heated by elliptical heat sources using the lattice Boltzmann method. Phys. Fluids 2021, 33, 123605. [Google Scholar] [CrossRef]
- Li, T.F.; Luo, K.; Yi, H.L. Effect of unipolar charge injection direction on the onset of Rayleigh-Bénard convection: A lattice Boltzmann study. Int. Comm. Heat Mass Transf. 2020, 112, 104496. [Google Scholar] [CrossRef]
- Yang, X.H.; Liu, J. Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method. Num. Heat Transf. Part A Appl. 2018, 73, 34–54. [Google Scholar] [CrossRef]
- Tahmooressi, H.; Kasaeian, A.; Yavarinasab, A.; Tarokh, A.; Ghazi, M.; Hoorfar, M. Numerical simulation of nanoparticles size/aspect ratio effect on thermal conductivity of nanofluids using lattice Boltzmann method. Int. Comm. Heat Mass Transf. 2021, 120, 105033. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid. Eng. Sci. Technol. Int. J. 2021, 24, 1201–1210. [Google Scholar] [CrossRef]
- Tucs, A.; Bojarevics, V.; Pericleous, K. Magnetohydrodynamic stability of large scale liquid metal batteries. J. Fluid Mech. 2018, 852, 453–483. [Google Scholar] [CrossRef]
- Fukami, K.; Fukagata, K.; Taira, K. Assessment of supervised machine learning methods for fluid flows. Theor. Comput. Fluid Dyn. 2020, 34, 497–519. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Wan, Z.Y.; Sapsis, T.P. Machine learning the kinematics of spherical particles in fluid flows. J. Fluid Mech. 2018, 857. [Google Scholar] [CrossRef]
- Farook, T.H.; Ahmed, S.; Jamayet, N.B.; Rashid, F.; Barman, A.; Sidhu, P.; Patil, P.; Lisan, A.M.; Eusufzai, S.Z.; Dudley, J.; et al. Computer-aided design and 3-dimensional artificial/convolutional neural network for digital partial dental crown synthesis and validation. Sci. Rep. 2023, 13, 1561. [Google Scholar] [CrossRef]
- García Cabello, J. Mathematical Neural Networks. Axioms 2022, 11, 80. [Google Scholar] [CrossRef]
- Xie, J.; Li, S. Training Neural Networks by Time-Fractional Gradient Descent. Axioms 2022, 11, 507. [Google Scholar] [CrossRef]
- Alqaed, S.; Mustafa, J.; Sharifpur, M. Numerical investigation and optimization of natural convection and entropy generation of alumina/H2O nanofluid in a rectangular cavity in the presence of a magnetic field with artificial neural networks. Eng. Anal. Bound. Elem. 2022, 140, 507–518. [Google Scholar] [CrossRef]
- Shah, M.A.; Pan, K.; Ibrahim, M.; Saeed, T. Use of neural network and machine learning in optimizing heat transfer and entropy generated in a cavity filled with nanofluid under the influence of magnetic field: A numerical study. Eng. Anal. Bound. Elem. 2022, 139, 113–131. [Google Scholar] [CrossRef]
- He, X.; Sidi, M.O.; Ahammad, N.A.; Elkotb, M.A.; Elattar, S.; Algelany, A. Artificial neural network joined with lattice boltzmann method to study the effects of mhd on the slip velocity of fmwnt/water nanofluid flow inside a microchannel. Eng. Anal. Bound. Elem. 2022, 143, 95–108. [Google Scholar] [CrossRef]
- Kefayati, G.; Gorji, M.; Sajjadi, H.; Ganji, D.D. Investigation of Prandtl number effect on natural convection MHD in an open cavity by Lattice Boltzmann Method. Eng. Comput. 2013, 30, 97–116. [Google Scholar] [CrossRef]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Mohamad, A. Lattice Boltzmann Method; Springer: Berlin/Heidelberg, Germany, 2011; Volume 70. [Google Scholar]
- Fattahi, A.; Hajialigol, N.; Delpisheh, M.; Karimi, N. Lattice-Boltzmann numerical simulation of double-diffusive natural convection and entropy generation in an n-shaped partially heated storage tank. Eng. Anal. Boundary Elem. 2023, 146, 105–118. [Google Scholar] [CrossRef]
- Hasanpour, A.; Farhadi, M.; Sedighi, K.; Ashorynejad, H. Numerical study of Prandtl effect on MHD flow at a lid-driven porous cavity. Int. J. Num. Meth. Fluids 2012, 70, 886–898. [Google Scholar] [CrossRef]
- Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Application in Engineering; World Scientific: Singapore, 2013; Volume 3. [Google Scholar]
- Hasan, M.F.; Molla, M.M.; Kamrujjaman, M.; Siddiqa, S. Natural convection flow over a vertical permeable circular cone with uniform surface heat flux in temperature-dependent viscosity with three-fold solutions within the boundary layer. Computation 2022, 10, 60. [Google Scholar] [CrossRef]
- Clever, R.; Busse, F. Transition to time-dependent convection. J. Fluid Mech. 1974, 65, 625–645. [Google Scholar] [CrossRef]
- He, X.; Chen, S.; Doolen, G.D. A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 1998, 146, 282–300. [Google Scholar] [CrossRef]
- Lera, G.; Pinzolas, M. Neighborhood based Levenberg-Marquardt algorithm for neural network training. IEEE Trans. Neural Netw. 2002, 13, 1200–1203. [Google Scholar] [CrossRef] [PubMed]
- Mailund, T. Manipulating data frames: Dplyr. In R Data Science Quick Reference; Springer: Berlin/Heidelberg, Germany, 2019; pp. 109–160. [Google Scholar]
- Borchers, H.W. Pracma: Practical numerical math functions. R Package Version 2019, 2, 519. [Google Scholar]
- Chapman, S.J. Fortran 90/95 for Scientists and Engineers; McGraw-Hill Higher Education: New York, NY, USA, 2004. [Google Scholar]
- R Core Team, R. R: A Language and Environment for Statistical Computing; R Core Team R: Vienna, Austria, 2013. [Google Scholar]
- Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Info. Model. 2014, 54, 1552. [Google Scholar] [CrossRef]
- Rudraiah, N.; Barron, R.; Venkatachalappa, M.; Subbaraya, C. Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 1995, 33, 1075–1084. [Google Scholar] [CrossRef]
- Kefayati, G.R. Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor. Comput. Fluid Dyn. 2013, 27, 865–883. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 2014, 254, 82–93. [Google Scholar] [CrossRef]
- Sajjadi, H.; Delouei, A.A.; Izadi, M.; Mohebbi, R. Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 132, 1087–1104. [Google Scholar] [CrossRef]
- Seta, T.; Takegoshi, E.; Okui, K. Lattice Boltzmann simulation of natural convection in porous media. Math. Comp. Sim. 2006, 72, 195–200. [Google Scholar] [CrossRef]
- Ghasemi, K.; Siavashi, M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J. Mol. Liq. 2017, 233, 415–430. [Google Scholar] [CrossRef]
- Dixon, A.G.; Partopour, B. Computational fluid dynamics for fixed bed reactor design. Ann. Rev. Chem. Biomol. Eng. 2020, 11, 109–130. [Google Scholar] [CrossRef]
- Lyu, Z.; Asadi, A.; Alarifi, I.M.; Ali, V.; Foong, L.K. Thermal and fluid dynamics performance of MWCNT-water nanofluid based on thermophysical properties: An experimental and theoretical study. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Rahman, A.; Redwan, D.A.; Thohura, S.; Kamrujjaman, M.; Molla, M.M. Natural convection and entropy generation of non-Newtonian nanofluids with different angles of external magnetic field using GPU accelerated MRT-LBM. Case Stud. Therm. Eng. 2022, 30, 101769. [Google Scholar] [CrossRef]
Empirical Parameters | Fitting Values |
f | 0.87404 |
a | 1.73303 |
b | 30.0595 |
c | 127.50 |
Statistical Accuracy Indicators | Values |
0.966 | |
p |
Empirical Parameters | Fitting Values |
f | 0.93997 |
a | 0.19833 |
b | −0.06512 |
c | 14.6836 |
Statistical Accuracy Indicators | Values |
0.90 | |
p |
Empirical Parameters | Fitting Values |
f | 3.47307 |
a | −0.00128 |
b | −0.75661 |
c | |
d | 5.79634 |
e | |
Statistical Accuracy Indicators | Values |
0.99 | |
p |
Empirical Parameters | Fitting Values |
f | 2.6105 |
a | 2.13773 |
b | −0.02639 |
Statistical Accuracy Indicators | Values |
0.91 | |
p | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Himika, T.A.; Hasan, M.F.; Molla, M.M.; Khan, M.A.I. LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm. Axioms 2023, 12, 199. https://doi.org/10.3390/axioms12020199
Himika TA, Hasan MF, Molla MM, Khan MAI. LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm. Axioms. 2023; 12(2):199. https://doi.org/10.3390/axioms12020199
Chicago/Turabian StyleHimika, Taasnim Ahmed, Md Farhad Hasan, Md. Mamun Molla, and Md Amirul Islam Khan. 2023. "LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm" Axioms 12, no. 2: 199. https://doi.org/10.3390/axioms12020199
APA StyleHimika, T. A., Hasan, M. F., Molla, M. M., & Khan, M. A. I. (2023). LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm. Axioms, 12(2), 199. https://doi.org/10.3390/axioms12020199