Developing an Intelligent Cellular Structure Design for a UAV Wireless Communication Topology
Abstract
:1. Introduction
2. Related Studies
- Determining parameters that affect designing cellular structure designs from a UAV perspective and via using MIMO antenna;
- Developing an AI framework to optimize the cellular structure design automatically;
- Validating the proposed work in the case of a real urban and densely populated zone.
3. Proposed UAV Topology and Simulation
3.1. Cellular Structure Design
- Central cell radius
- Beamwidth
- Beams angles
- Tiers number
- Environment type (Urban, Suburban, Rural)
- Population density
- Probability of Building Distribution
3.2. Mathematical Calculation of Link Budget and AI Framework
4. Discussion and Proof-of-Concept
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nair, M.M.; Tyagi, A.K.; Sreenath, N. The Future with Industry 4.0 at the Core of Society 5.0: Open Issues, Future Opportunities and Challenges. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J. Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3417–3442. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A Comprehensive Survey. IEEE Internet Things J. 2021, 9, 359–383. [Google Scholar] [CrossRef]
- Higginbotham, S. Network included—[Internet of Everything]. IEEE Spectr. 2020, 57, 22–23. [Google Scholar] [CrossRef]
- Almalki, F.A.; Aljohani, M.; Algethami, M.; Soufiene, B.O. Incorporating Drone and AI to Empower Smart Journalism via Optimizing a Propagation Model. Sustainability 2022, 14, 3758. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [Google Scholar] [CrossRef]
- Almalki, F.A.; Soufiene, B.O. Modifying Hata-Davidson Propagation Model for Remote Sensing in Complex Environments Using a Multifactional Drone. Sensors 2022, 22, 1786. [Google Scholar] [CrossRef] [PubMed]
- Alsamhi, S.H.; Almalki, F.A.; Afghah, F.; Hawbani, A.; Shvetsov, A.V.; Lee, B.; Song, H. Drones’ Edge Intelligence Over Smart Environments in B5G: Blockchain and Federated Learning Synergy. IEEE Trans. Green Commun. Netw. 2021, 6, 295–312. [Google Scholar]
- Shrestha, R.; Bajracharya, R.; Kim, S. 6G Enabled Unmanned Aerial Vehicle Traffic Management: A Perspective. IEEE Access 2021, 9, 91119–91136. [Google Scholar] [CrossRef]
- Almalki, F.A.; Ben Othman, S. Predicting Joint Effects on CubeSats to Enhance Internet of Things in GCC Region Using Artificial Neural Network. Mob. Inf. Syst. 2021, 2021, 1827155. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Almalki, F.A.; Al-Dois, H.; Ben Othman, S.; Hassan, J.; Hawbani, A.; Sahal, R.; Lee, B.; Saleh, H. Machine Learning for Smart Environments in B5G Networks: Connectivity and QoS. Comput. Intell. Neurosci. 2021, 2021, 6805151. [Google Scholar] [CrossRef]
- Alhusayni, S.A.; Alsuwat, S.K.; Altalhi, S.H.; Almalki, F.A.; Alzahrani, H.S. Experimental Study of a Tethered Balloon Using 5G Antenna to Enhance Internet Connectivity. In Intelligent Computing. Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2021; Volume 285, pp. 649–663. [Google Scholar] [CrossRef]
- Khan, S.; Tafshir, N.; Alam, K.N.; Dhruba, A.R.; Khan, M.M.; Albraikan, A.A.; Almalki, F.A. Deep Learning for Ocular Disease Recognition: An Inner-Class Balance. Comput. Intell. Neurosci. 2022, 2022, 5007111. [Google Scholar] [CrossRef] [PubMed]
- Almalki, F.A.; Angelides, M.C. Autonomous flying IoT: A synergy of machine learning, digital elevation, and 3D structure change detection. Comput. Commun. 2022, 190, 154–165. [Google Scholar] [CrossRef]
- Alam, T.; Khan, A.I.; Dola, N.N.; Tazin, T.; Khan, M.M.; Albraikan, A.A.; Almalki, F.A. Comparative Analysis of Different Efficient Machine Learning Methods for Fetal Health Classification. Appl. Bionics Biomech. 2022, 2022, 6321884. [Google Scholar] [CrossRef]
- Essid, C.; Abdelhamid, C.; Almalki, F.A.; Ali, O.; Sakli, H. New MIMO Antenna with Filtration for the Future Multiuser Systems in Satellite Communications. Wirel. Commun. Mob. Comput. 2022, 2022, e1040333. [Google Scholar] [CrossRef]
- Strinati, E.C.; Barbarossa, S.; Choi, T.; Pietrabissa, A.; Giuseppi, A.; De Santis, E.; Vidal, J.; Becvar, Z.; Haustein, T.; Cassiau, N.; et al. 6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper). ETRI J. 2020, 42, 643–657. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Almalki, F.A.; Ma, O.; Ansari, M.S.; Lee, B. Predictive Estimation of Optimal Signal Strength from Drones Over IoT Frameworks in Smart Cities. IEEE Trans. Mob. Comput. 2021, 22, 402–416. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Almalki, F.A.; Ma, O.; Ansari, M.S.; Angelides, M.C. Performance optimization of tethered balloon technology for public safety and emergency communications. Telecommun. Syst. 2020, 75, 235–244. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Almalki, F.A.; Gapta, S.; Ansari, M.; Ma, O.; Angelides, M. Tethered Balloon Technology for Emergency Communication and Disaster Relief Deployment. Telecommun. Syst. 2019, 75, 235–244. [Google Scholar] [CrossRef]
- Hsieh, F.; Jardel, F.; Visotsky, E.; Vook, F.; Ghosh, A.; Picha, B. UAV-based Multi-cell HAPS Communication: System Design and Performance Evaluation. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Almalki, F.A.; Angelides, M.C. Empirical evolution of a propagation model for low altitude platforms. In Proceedings of the 2017 Computing Conference, London, UK, 18–20 July 2017; pp. 1297–1304. [Google Scholar] [CrossRef]
- Kishk, M.; Bader, A.; Alouini, M.-S. Aerial Base Station Deployment in 6G Cellular Networks Using Tethered Drones: The Mobility and Endurance Tradeoff. IEEE Veh. Technol. Mag. 2020, 15, 103–111. [Google Scholar] [CrossRef]
- Azari, M.M.; Rosas, F.; Pollin, S. Cellular Connectivity for UAVs: Network Modeling, Performance Analysis, and Design Guidelines. IEEE Trans. Wirel. Commun. 2019, 18, 3366–3381. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fei, Z.; Zhang, Y.; Guizani, M. Secure UAV Communication Networks over 5G. IEEE Wirel. Commun. 2019, 26, 114–120. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Zhang, R. Multi-Beam UAV Communication in Cellular Uplink: Cooperative Interference Cancellation and Sum-Rate Maximization. IEEE Trans. Wirel. Commun. 2019, 18, 4679–4691. [Google Scholar] [CrossRef] [Green Version]
- Almalki, F.A.; Angelides, M.C. Evolution of an Optimal Propagation Model for the Last Mile with Low Altitude Platforms using Machine Learning. Elsevier Comput. Commun. J. 2019, 142–143, 9–33. [Google Scholar] [CrossRef]
- Esrafilian, O.; Gangula, R.; Gesbert, D. 3D-Map Assisted UAV Trajectory Design under Cellular Connectivity Constraints. In Proceedings of the ICC 2020—IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Izydorczyk, T.; Ginard, M.M.; Svendsen, S.; Berardinelli, G.; Mogensen, P. Experimental evaluation of beamforming on UAVs in cellular systems. In Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 8 November–16 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Song, D.; Zhai, X.B.; Liu, X.; Tan, C.W. Jointly Optimal Fair Data Collection and Trajectory Design Algorithms in UAV-Aided Cellular Networks. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Song, L.; Han, Z.; Poor, H.V. Cooperation Techniques for a Cellular Internet of Unmanned Aerial Vehicles. IEEE Wirel. Commun. 2019, 26, 167–173. [Google Scholar] [CrossRef]
- Almalki, F.A.; Angelides, M.C. Deployment of an aerial platform system for rapid restoration of communications links after a disaster: A machine learning approach. Computing 2019, 102, 829–864. [Google Scholar] [CrossRef] [Green Version]
- Fouda, A.; Ibrahim, A.S.; Guvenc, I.; Ghosh, M. UAV-Based In-Band Integrated Access and Backhaul for 5G Communications. In Proceedings of the IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Xiao, L.; Dai, C.; Dai, H. UAV-Aided Cellular Communications with Deep Reinforcement Learning Against Jamming. IEEE Wirel. Commun. 2020, 27, 48–53. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, H.; Wu, J.; Song, L. Cellular UAV-to-Device Communications: Trajectory Design and Mode Selection by Multi-Agent Deep Reinforcement Learning. IEEE Trans. Commun. 2020, 68, 4175–4189. [Google Scholar] [CrossRef] [Green Version]
- Tomida, A.G. Matlab Toolbox and GUI for Analyzing One-Dimensional Chaotic Maps. In Proceedings of the 2008 International Conference on Computational Sciences and Its Applications, Perugia, Italy, 30 June–3 July 2008; pp. 321–330. [Google Scholar] [CrossRef]
- Tibor, B.; Fedak, V.; Durovsky, F. Modeling and simulation of the BLDC motor in MATLAB GUI. In Proceedings of the IEEE 2011 International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1403–1407. [Google Scholar] [CrossRef]
- Chayratsami, P. Learning Efficiency and Effectiveness of Using MATLAB GUI for a Binary Baseband Communication System. In Proceedings of the 7th World Engineering Education Forum (WEEF), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 115–119. [Google Scholar] [CrossRef]
- Kumar, A.; Perveen, S.; Singh, S.; Kumar, A.; Majhi, S.; Das, S.K. 6th Generation: Communication, Signal Processing, Advanced Infrastructure, Emerging Technologies and Challenges. In Proceedings of the 6th International Conference on Computing, Communication and Security (ICCCS), Las Vegas, NV, USA, 4–6 October 2021; pp. 1–16. [Google Scholar] [CrossRef]
- Qian, J.; Wang, J.; Jin, S. Configurable virtual MIMO via UAV swarm: Channel modeling and spatial correlation analysis. China Commun. 2022, 19, 133–145. [Google Scholar] [CrossRef]
- Almalki, F.A. Comparative and QoS Performance Analysis of Terrestrial-aerial Platforms-satellites Systems for Temporary Events. Int. J. Comput. Netw. Commun. 2019, 11, 111–133. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Almalki, F.A.; Al-Dois, H.; Shvetsov, A.V.; Ansari, M.S.; Hawbani, A.; Gupta, S.K.; Lee, B. Multi-Drone Edge Intelligence and SAR Smart Wearable Devices for Emergency Communication. Wirel. Commun. Mob. Comput. 2021, 2021, 6710074. [Google Scholar] [CrossRef]
- Salh, A.; Audah, L.; Kim, K.S.; Alsamhi, S.H.; Alhartomi, M.A.; Abdullah, Q.; Almalki, F.A.; Algethami, H. Refiner GAN Algorithmically Enabled Deep-RL for Guaranteed Traffic Packets in Real-Time URLLC B5G Communication Systems. IEEE Access 2022, 10, 50662–50676. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Fonseca, N.J.G.; Bacco, M.; Mugnaini, S.; Genovesi, S. Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios. Sensors 2022, 22, 3136. [Google Scholar] [CrossRef] [PubMed]
- Chaudhri, S.N.; Rajput, N.S.; Alsamhi, S.H.; Shvetsov, A.V.; Almalki, F.A. Zero-Padding and Spatial Augmentation-Based Gas Sensor Node Optimization Approach in Resource-Constrained 6G-IoT Paradigm. Sensors 2022, 22, 3039. [Google Scholar] [CrossRef]
- Dajer, M.; Ma, Z.; Piazzi, L.; Prasad, N.; Qi, X.-F.; Sheen, B.; Yang, J.; Yue, G. Reconfigurable intelligent surface: Design the channel—A new opportunity for future wireless networks. Digit. Commun. Netw. 2021, 8, 87–104. [Google Scholar] [CrossRef]
- Fang, X.; Feng, W.; Wei, T.; Chen, Y.; Ge, N.; Wang, C.-X. 5G Embraces Satellites for 6G Ubiquitous IoT: Basic Models for Integrated Satellite Terrestrial Networks. IEEE Internet Things J. 2021, 8, 14399–14417. [Google Scholar] [CrossRef]
- Salh, A.; Audah, L.; Alhartomi, M.A.; Kim, K.S.; Alsamhi, S.H.; Almalki, F.A.; Abdullah, Q.; Saif, A.; Algethami, H. Smart Packet Transmission Scheduling in Cognitive IoT Systems: DDQN Based Approach. IEEE Access 2022, 10, 50023–50036. [Google Scholar] [CrossRef]
- Junior, P.O.; Conte, S.; D’Addona, D.M.; Aguiar, P.; Bapstista, F. An improved impedance-based damage classification using Self-Organizing Maps. Procedia CIRP 2020, 88, 330–334. [Google Scholar] [CrossRef]
- Astudillo, C.A.; Oommen, B.J. Topology-oriented self-organizing maps: A survey. Pattern Anal. Appl. 2014, 17, 223–248. [Google Scholar] [CrossRef]
- General Authority for Statistics. Available online: https://www.stats.gov.sa/en (accessed on 16 May 2022).
- Communications and Information Technology Commission. Available online: https://www.citc.gov.sa/en/Pages/default.aspx (accessed on 16 May 2022).
Ref. | UAV Platform Type | Network Topology | AI Framework | Cellular Design |
---|---|---|---|---|
[21] | HAP | Standalone | - | Adaptive beamforming with fixed cellular design |
[22] | LAP | Standalone | NN | Adaptive beamforming with fixed cellular design |
[23] | Drone | Standalone | - | Predefined cellular scenarios |
[24] | Drone | Standalone | - | Optimized omnidirectional antenna for micro cells |
[25] | Swarm of UAVs | Multilayer | - | Beamforming designs using multiple-antenna |
[26] | Drone | Standalone | - | Multi beam at a fixed location |
[27] | LAP | Standalone | ML | Static circular cellular structure design |
[28] | UAV | Integrated UAVs | - | Predefined trajectory of cellular structure design |
[29] | UAV | Standalone | - | Beam switching technique used to structure the cellular network |
[30] | UAV | Standalone | - | Modified parallel projection algorithm to adjust the distance of cellular |
[31] | Drone | Fleet of drones | - | Cooperative cellular design |
[32] | Tethered platform | Standalone | RBF | Semi-adaptive cellular structure design |
[33] | Drone | Standalone | - | Massive MIMO for small cellular structure |
[34] | Drone | Standalone | RL | Enhance cellular system by focusing on jamming channels |
[35] | Drone | Integrated UAVs | DRL | Focusing on the central of cellular structure |
Proposed Model | UAVs | Heterogenous UAVs Topology | SOM and NN | Adaptive and intelligent cellular structure design via MIMO Beamforming and AI framework |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhalifah, E.S.; Almalki, F.A. Developing an Intelligent Cellular Structure Design for a UAV Wireless Communication Topology. Axioms 2023, 12, 129. https://doi.org/10.3390/axioms12020129
Alkhalifah ES, Almalki FA. Developing an Intelligent Cellular Structure Design for a UAV Wireless Communication Topology. Axioms. 2023; 12(2):129. https://doi.org/10.3390/axioms12020129
Chicago/Turabian StyleAlkhalifah, Eman S., and Faris A. Almalki. 2023. "Developing an Intelligent Cellular Structure Design for a UAV Wireless Communication Topology" Axioms 12, no. 2: 129. https://doi.org/10.3390/axioms12020129
APA StyleAlkhalifah, E. S., & Almalki, F. A. (2023). Developing an Intelligent Cellular Structure Design for a UAV Wireless Communication Topology. Axioms, 12(2), 129. https://doi.org/10.3390/axioms12020129