Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legendre, A. Recherches sur la Attraction Sphéroides Homogénes; Mémoires Présentes par Divers Savants a la Académie des Sciences de la Institut de France: France, Paris, 1785; Volume 10. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Doman, B.G.S. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Adegani, E.A.; Bulut, S.; Zireh, A.A. Coefficient estimates for a subclass of analytic bi-univalent functions. Bull. Korean Math. Soc. 2018, 55, 405–413. [Google Scholar]
- Alamoush, A.G. On subclass of analytic bi-close-to-convex functions. Int. J. Open Probl. Complex Anal. 2021, 13, 10–18. [Google Scholar]
- Alamoush, A. Coefficient estimates for a new subclasses of lambda-pseudo bi-univalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
- Alazman, I.; Alkahtani, B.S.T.; Wani, S.A. Certain properties of Δh multi-variate Hermite polynomials. Symmetry 2023, 15, 839. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
- Alkahtani, B.S.T.; Alazman, I.; Wani, S.A. Some families of differential equations associated with multivariate Hermite polynomials. Fractal Fract. 2023, 7, 390. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalçin, S. On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions. Malaya J. Math. 2017, 5, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Altinkaya, S.; Yalçin, S. On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Gulf J. Math. 2017, 5, 34–40. [Google Scholar] [CrossRef]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A generalization of Gegenbauer polynomials and bi-univalent functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seudy, T. Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar]
- Aouf, M.K.; Seudy, T. Certain class of bi-Bazilevič functions with bounded boundary rotation involving Salǎgeǎn operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
- Badghaish, A.O.; Lashin, A.M.Y.; Bajamal, A.Z.; Alshehri, F.A. A new subclass of analytic and bi-univalent functions associated with Legendre polynomials. AIMS Math. 2023, 8, 23534–23547. [Google Scholar] [CrossRef]
- Breaz, D.; Cotîrlǎ, L.-I. The study of the new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
- Breaz, D.; Murugusundaramoorthy, G.; Vijaya, K.; Cotîrlǎ, L.-I. Certain class of bi-univalent functions defined by Sǎlǎgean q-difference operator related with involution numbers. Symmetry 2023, 15, 1302. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016, 30, 1567–1575. [Google Scholar] [CrossRef]
- Caglar, M.; Cotirla, L.-I.; Buyankara, M. Fekete-Szegö inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Eker, S.S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk. J. Math. 2016, 40, 641–646. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
- Ghazy, A.; Murugusundaramoorthy, G. Certain subclasses of λ-pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial. Afr. Mat. 2023, 34, 11. [Google Scholar]
- Guney, H.O.; Murugusundaramoorthy, G.; Sokol, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oluwayemi, M.O.; Lupaş, A.A.; Wanas, A.K. Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points. Fractal Fract. 2022, 6, 483. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Magesh, N.; Bulut, S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 2018, 29, 203–209. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacǎ, T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms 2022, 11, 92. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Guney, H.O.; Vijaya, K. Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial. Adv. Stud. Contemp. Math. 2022, 32, 5–15. [Google Scholar]
- Orhan, H.; Cotîrlǎ, L.-I. Fekete-Szegö inequalities for some certain subclass of analytic functions defined with Ruscheweyh derivative operator. Axioms 2022, 11, 560. [Google Scholar] [CrossRef]
- Orhan, H.; Magesh, N.; Balaji, V.K. Initial coefficient bounds for a general class of bi-univalent functions. Filomat 2015, 29, 1259–1267. [Google Scholar] [CrossRef]
- Páll-Szabó, A.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
- Şeker, B. On a new subclass of bi-univalent functions defined by using Sǎlǎgean operator. Turk. J. Math. 2018, 42, 2891–2896. [Google Scholar] [CrossRef]
- Shaba, T.G. On some subclasses of bi-pseudo-starlike functions defined by Sǎlǎgean differential operator. Asia Pac. J. Math. 2021, 8, 1–11. [Google Scholar]
- Shehab, N.H.; Juma, A.R.S. Coefficient bounds of m-fold symmetric bi-univalent functions for certain subclasses. Int. J. Nonlinear Anal. Appl. 2021, 12, 71–82. [Google Scholar]
- Srivastava, H.M.; Altinkaya, S.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpathian J. Math. 2018, 34, 103–113. [Google Scholar]
- Wanas, A.K.; Cotîrlă, L.-I. Applications of (M − N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Thomas, D.K. Some subclasses of close-to-convex functions. J. Ramanujan Math. Soc. 1987, 2, 85–100. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 2. [Google Scholar]
- Stein, E.; Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Reimer, M. Multivariate Polynomial Approximation; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Wanas, A.K.; Majeed, A.H. Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Appl. Math. E-Notes 2019, 19, 14–21. [Google Scholar]
- Wanas, A.K.; Yalçin, S. Coefficient estimates and Fekete-Szegö inequality for family of bi-univalent functions defined by the second kind Chebyshev polynomial. Int. J. Open Probl. Compt. Math. 2020, 13, 25–33. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, Y.; Wanas, A.K.; Shaba, T.G.; Alb Lupaş, A.; Abdalla, M. Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials. Axioms 2023, 12, 1018. https://doi.org/10.3390/axioms12111018
Almalki Y, Wanas AK, Shaba TG, Alb Lupaş A, Abdalla M. Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials. Axioms. 2023; 12(11):1018. https://doi.org/10.3390/axioms12111018
Chicago/Turabian StyleAlmalki, Yahya, Abbas Kareem Wanas, Timilehin Gideon Shaba, Alina Alb Lupaş, and Mohamed Abdalla. 2023. "Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials" Axioms 12, no. 11: 1018. https://doi.org/10.3390/axioms12111018
APA StyleAlmalki, Y., Wanas, A. K., Shaba, T. G., Alb Lupaş, A., & Abdalla, M. (2023). Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials. Axioms, 12(11), 1018. https://doi.org/10.3390/axioms12111018