A New Pseudo-Type κ-Fold Symmetric Bi-Univalent Function Class
Abstract
:1. Preliminaries
2. The Class
3. The Class
4. The Class
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guney, H.O.; Murugusundaramoorthy, G. New classes of pseudo-type bi-univalent fumctions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2020, 114, 65. [Google Scholar] [CrossRef]
- Babalola, K.O. On λ-pseudo-starlke functions. J. Class. Anal. 2012, 3, 137–147. [Google Scholar]
- Al-Amiri, H.S.; Reade, M.O. On a linear combination of some expressions in the theory of univalent functions. Monatsh. Math. 1975, 80, 257–264. [Google Scholar] [CrossRef]
- Sukhjit, S.; Sushma, G. On a problem of H. S. Almiri and M. O. Reade. Demonstr. Math. 2005, 38, 303–311. [Google Scholar]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Appl. 1985, 3, 18–21. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functons. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 317, 10. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Tbilisi Math J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Acta Math. Sci. Ser. B. 2016, 36, 863–971. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zireh, A.; Hajiparvaneh, S. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Filomat 2018, 32, 3143–3153. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficients bounds for new subclasses of m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. Fekete-Szegö functional problems of m-fold symmetric bi-univalent functions. J. Math. Ineq. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Wanas, A.K.; Páll-Szabó, A.O. Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions. Stud. Univ. Babes-Bolai Math. 2021, 66, 659–666. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Über Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, 89, 85–89. [Google Scholar] [CrossRef]
- Swamy, S.R.; Frasin, B.A.; Aldawish, I. Fekete-Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 1165. [Google Scholar] [CrossRef]
- Swamy, S.R.; Cotîrlă, L.-I. On τ-pseudo-ν-convex κ-fold symmetric bi-univalent function family. Symmetry 2022, 14, 1972. [Google Scholar] [CrossRef]
- Aldawish, I.; Swamy, S.R.; Frasin, B.A. A special family of m-fold symmetric bi-univalent functions satisfying subordination condition. Fractal Fract. 2022, 6, 271. [Google Scholar] [CrossRef]
- Breaz, D.; Cotîrlă, L.-I. The study of the new classes of m-fold symmetric bi-univalent Functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.-I. Coefficient Estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Shehab, N.H.; Juma, A.R.S. Coefficient bounds of m-fold symmetric bi-univalent functions for certain subclasses. Int. J. Nonlinear Anal. Appl. 2021, 12, 71–82. [Google Scholar] [CrossRef]
- Sabir, P.O.; Srivastava, H.M.; Atshan, W.G.; Mohammed, P.O.; Chorfi, N.; Miguel, V.-C. A family of holomorphic and m-fold symmetric bi-univalent functions endowed with coefficient estimate problems. Mathematics 2023, 11, 3970. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Peng, Z.-G.; Han, Q.-Q. On the coefficients of several classes of bi-univalent functions. Acta. Math. Sci. Ser. B Engl. Ed. 2014, 34, 228–240. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to he subclasses of analytic and bi-uivalent functions. AIMS Math. 2020, 6, 1024–1039. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Cotîrlă, L.-I. Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial. AIMS Math. 2022, 7, 8733–8750. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swamy, S.R.; Cotîrlă, L.-I. A New Pseudo-Type κ-Fold Symmetric Bi-Univalent Function Class. Axioms 2023, 12, 953. https://doi.org/10.3390/axioms12100953
Swamy SR, Cotîrlă L-I. A New Pseudo-Type κ-Fold Symmetric Bi-Univalent Function Class. Axioms. 2023; 12(10):953. https://doi.org/10.3390/axioms12100953
Chicago/Turabian StyleSwamy, Sondekola Rudra, and Luminita-Ioana Cotîrlă. 2023. "A New Pseudo-Type κ-Fold Symmetric Bi-Univalent Function Class" Axioms 12, no. 10: 953. https://doi.org/10.3390/axioms12100953
APA StyleSwamy, S. R., & Cotîrlă, L. -I. (2023). A New Pseudo-Type κ-Fold Symmetric Bi-Univalent Function Class. Axioms, 12(10), 953. https://doi.org/10.3390/axioms12100953