Inequalities for the Generalized Normalized δ-Casorati Curvatures of Submanifolds in Golden Riemannian Manifolds
Abstract
:1. Introduction
2. Preliminaries
2.1. Riemannian Invariants
2.2. Golden Riemannian Manifolds
3. Geometric Inequalities
- (i)
- satisfiesif
- (ii)
- satisfiesif
- (i)
- (ii)
- the bilinear formis positive semi-definite,
- (i)
- satisfies.
- (ii)
- satisfies.
- (i)
- satisfies.
- (ii)
- satisfies.
- (i)
- satisfies
- (ii)
- satisfies
4. Consequences
- (i)
- satisfiesFurthermore, the equality holds in (30) under the same conditions of the equality as in Theorem 1, and are written by
- (ii)
- satisfies
- (i)
- satisfiesAdditionally, the equality holds in (32) under the same equality conditions as in the Theorem 1, and are given by
- (ii)
- satisfies
5. Conclusions
- the golden structure: ;
- the silver structure: ;
- the bronze structure: ;
- the subtle structure: ;
- the copper structure: ;
- the nickel structure: , etc.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldberg, S.I.; Yano, K. Polynomial structures on manifolds. Kodai Math. Sem. Rep. 1970, 22, 199–218. [Google Scholar] [CrossRef]
- Crasmareanu, M.; Hretcanu, C. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229–1238. [Google Scholar] [CrossRef]
- Hretcanu, C.; Crasmareanu, M. Metallic structures on Riemannian manifolds. Rev. La Union Mat. Argent. 2013, 54, 15–27. [Google Scholar]
- Gezer, A.; Cengiz, N.; Salimov, A. On integrability of golden Riemannian structures. Turk. J. Math. 2013, 37, 693–703. [Google Scholar] [CrossRef]
- Sahin, F.; Sahin, B.; Erdogan, F.E. Golden Riemannian manifolds having constant sectional curvatures and their submanifolds. Mediterr. J. Math. 2022, 19, 171. [Google Scholar] [CrossRef]
- Blaga, A.M.; Nannicini, A. On curvature tensors of Norden and metallic pseudo-Riemannian manifold. Complex Manifolds 2019, 6, 150–159. [Google Scholar] [CrossRef]
- Blaga, A.M.; Nannicini, A. On the geometry of generalized metallic pseudo-Riemannian structures. Riv. Mat. Della Univ. Parma 2020, 11, 69–87. [Google Scholar]
- Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Chen, B.Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Aydin, M.E.; Mihai, A.; Mihai, I. Some inequalities on submanifolds in statistical manifolds of constant curvature. Filomat 2015, 29, 465–477. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Park, K. Optimization on slant submanifolds of golden Riemannian manifolds using generalized normalized δ-Casorati curvatures. J. Geom. 2020, 111, 31. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Khaled, M.K.; Bahadır, O.; Siddiqi, M.D. On golden Lorentzian manifolds equipped with generalized symmetric metric connection. Mathematics 2021, 9, 2430. [Google Scholar] [CrossRef]
- Liu, X. On Ricci curvature of totally real submanifolds in a quaternion projective space. Arch. Math. 2002, 38, 297–305. [Google Scholar]
- Liu, X.; Dai, W. Ricci curvature of submanifolds in a quaternion projective space. Commun. Korean Math. Soc. 2002, 17, 625–633. [Google Scholar] [CrossRef]
- Mihai, I.; Mohammed, M. Optimal inequalities for submanifolds in trans-Sasakian manifolds endowed with a semi-symmetric metric connection. Symmetry 2023, 15, 877. [Google Scholar] [CrossRef]
- Mihai, I.; Al-Solamy, F.R.; Shahid, M.H. On Ricci curvature of a quaternion CR-submanifold in a quaternion space form. Rad. Mat. 2003, 12, 91–98. [Google Scholar]
- Vilcu, G.E. Slant submanifolds of quaternionic space forms. Publ. Math. Debr. 2012, 81, 397–413. [Google Scholar] [CrossRef]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Acta Math. 1890, 14, 95–110. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Khan, M.N.; Siddiqi, M.D. Some basic inequalities on (ϵ)-para Sasakian manifold. Symmetry 2022, 14, 2585. [Google Scholar] [CrossRef]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities involving Casorati curvatures. Bull. Transylv. Univ. Brasov. Ser. B 2007, 14, 85–93. [Google Scholar]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure Appl. Math. 2008, 9, 79. [Google Scholar]
- Lee, C.W.; Lee, J.W.; Vilcu, G.E. Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms. Adv. Geom. 2017, 17, 1–13. [Google Scholar] [CrossRef]
- Lee, J.; Vilcu, G.E. Inequalities for generalized normalized δ-Casorati curvature of slant submanifolds in quaternionic space forms. Taiwan. J. Math. 2015, 19, 691–702. [Google Scholar] [CrossRef]
- Blair, D.E. Quasi-umbilical, minimal submanifolds of Euclidean space. Simon Stevin 1977, 51, 3–22. [Google Scholar]
- Bahadir, O.; Uddin, S. Slant submanifolds of golden Riemannian manifolds. J. Math. Ext. 2019, 13, 1–10. [Google Scholar]
- Oprea, T. Optimization methods on Riemannian submanifolds. An. Univ. Bucur. Mat. 2005, 54, 127–136. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, M.A.; Mihai, I. Inequalities for the Generalized Normalized δ-Casorati Curvatures of Submanifolds in Golden Riemannian Manifolds. Axioms 2023, 12, 952. https://doi.org/10.3390/axioms12100952
Choudhary MA, Mihai I. Inequalities for the Generalized Normalized δ-Casorati Curvatures of Submanifolds in Golden Riemannian Manifolds. Axioms. 2023; 12(10):952. https://doi.org/10.3390/axioms12100952
Chicago/Turabian StyleChoudhary, Majid Ali, and Ion Mihai. 2023. "Inequalities for the Generalized Normalized δ-Casorati Curvatures of Submanifolds in Golden Riemannian Manifolds" Axioms 12, no. 10: 952. https://doi.org/10.3390/axioms12100952
APA StyleChoudhary, M. A., & Mihai, I. (2023). Inequalities for the Generalized Normalized δ-Casorati Curvatures of Submanifolds in Golden Riemannian Manifolds. Axioms, 12(10), 952. https://doi.org/10.3390/axioms12100952