Next Article in Journal
A Novel Robust Topological Denoising Method Based on Homotopy Theory for Virtual Colonoscopy
Next Article in Special Issue
Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
Previous Article in Journal
On the Acoustic Radiation Force Affecting Two Liquid Drops Located in the Wave Field
Previous Article in Special Issue
Modified Inertial-Type Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Finite Bregman Relatively Nonexpansive and Demicontractive Mappings
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application

1
Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
2
Saudi Arabia-Alqunfudah Mathematics Department, Al-Qunfudah University College, Umm Al-Qura University, Mecca 21421, Saudi Arabia
3
Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan
4
Department of Computing and Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(10), 941; https://doi.org/10.3390/axioms12100941
Submission received: 11 August 2023 / Revised: 19 September 2023 / Accepted: 27 September 2023 / Published: 30 September 2023
(This article belongs to the Special Issue Research on Fixed Point Theory and Application)

Abstract

:
In this manuscript, we prove several common fixed point theorems for generalized rational-type contraction mappings under several conditions in the context of double-controlled metric spaces. Further, we utilize a double-controlled metric space equipped with a graph to prove rational-type common fixed point theorems. Furthermore, we establish non-trivial examples to show the validity of the main results. These results improve and generalize already known results. At the end, we solve the Fredholm-type integral equation by utilizing the main results.

1. Introduction

The concept of fixed points has been utilized on a global scale in many disciplines of research and engineering [1,2]. Fixed point results were used to show that there are solutions to ordinary boundary value problems and fractional boundary value problems with integral-type boundary conditions, as described by Karapinar et al. [3]. In 1906, Frechet [4] presented the notion of metric spaces (MSs). MS techniques have been used for decades in a variety of applications, including image classification, protein classification, and Internet search engines. In order to extend metric techniques like Banach’s theorem to non-Hausdorff topologies, Matthews [5] introduced a symmetric generalized metric for such topologies. Mustafa and Sims [6] established the notion of generalized MS and worked on completeness and compactness. Azam et al. [7] proved a common fixed point theorem by utilizing contractive mappings for a pair of mappings in the framework of complex-valued MSs. Mitrovic and Radenovic [8] established the notion of   b v ( s ) -metric space as a generalization of MS, rectangular MS, b-MS, rectangular b-MS, v-generalized MS Banach, and proved fixed point results for Reich contractions in   b v ( s ) -MS.
In 1993, Czerwik [9] established the concept of b-MS as a generalization of MS. He used a constant   s 1   on the right side of the triangle inequality; if we consider   s = 1   then b-MS becomes an MS. In 2017, Kamran et al. [10] presented the notion of an extended b-MS as a generalization of b-MS. They replaced a constant   s 1   with a function   σ : Ξ × Ξ 1 ,     and proved a Banach version of contraction mapping in the framework of extended b-MS. Recently, Mlaiki et al. [11] extended the notion of extended b-MS by utilizing the function   σ : Ξ × Ξ 1 ,     with both terms separately on the right side of the triangular inequality and introduced controlled MS (CMS). Mustafa et al. [12] used the idea of extended b-MS and presented the notion of extended rectangular b-MS. Lateef [13] proved the fixed point theorem for Kannan-type contraction mapping in the context of CMSs. Abuloha et al. [14] derived several fixed point results for CMSs by utilizing the class of functions denoted by   ψ γ .   For more related results in the setting of controlled-type MSs, see [15,16].
Abdeljawad et al. [17] presented double-controlled MS (DCMS) as a generalization of controlled MS by utilizing two functions   σ , γ : Ξ × Ξ 1 ,   ,   with both terms separately on the right side of triangular inequality as follows:
d ϖ , ω α ϖ ,   ϰ d ϖ ,   ϰ + γ ϰ , ω d ϰ , ω   f o r   a l l   ϖ , ϰ , ω Ξ .
Lateef [18] proved Fisher type fixed point results in controlled metric spaces. Farhan et al. [19] proved numerous fixed point results for   ( α ,   F ) -contraction and Reich-type contraction in the setting of DCMSs and partially ordered DCMSs. The authors in [20,21,22,23,24] generalized the notion of DCMSs by utilizing intuitionistic fuzzy sets and neutrosophic sets, and proved fixed point theorems with several applications. Latif [25] introduced the concept of neutrosophic delta–beta-connected topological spaces. Touqeer and Rasool [26] utilized a neutrosophic approach for decision making. Bousselsal Mostefaoui [27] proved some common fixed point results in partial metric spaces for generalized rational-type contraction mappings. Rao et al. [28] proved the existence and uniqueness of Suzuki-type results in   S b -metric spaces with application to integral equations. Chandok and Kim [29] derived a fixed point theorem in ordered metric spaces for generalized contraction mappings that satisfy rational-type expressions.
In this paper, we prove some common fixed point theorems for generalized rational-type contraction mappings and rational-type contractions equipped with graphs in the setting of DCMSs. Further, we solve the integral equation by using the main results. Our results generalize several existing results in [11,18,20].

2. Preliminaries

This section contains some basic definitions.
Definition 1 ([9]).
Suppose   Ξ   and   s 1   is any real number. The pair   Ξ , , s   is called b-MS if a function   : Ξ × Ξ 0 ,   ,   verifying the following axioms:
  • (bMS1)   ϖ ,   ϰ 0   and   ϖ ,   ϰ = 0   if and only if   ϖ = ϰ ,  
  • (bMS2)   ϖ ,   ϰ = ϰ ,   ϖ ,  
  • (bMS3)   ϖ ,   ω s ϖ ,   ϰ + ϰ ,   ω   ,  
for all   ϖ ,   ϰ , ω Ξ .  
Kamran et al. [10] established the following notion of extended b-MS in 2017.
Definition 2 ([10]).
Assume that   Ξ   and   σ : Ξ × Ξ 1 ,   .   The triplet   Ξ , , σ   is called extended b-MS if a function   : Ξ × Ξ 0 ,   ,   verifying the following axioms:
  • (EbMS1)   ϖ ,   ϰ 0   and   ϖ ,   ϰ = 0   if and only if   ϖ = ϰ ,  
  • (EbMS2)   ϖ ,   ϰ = ϰ ,   ϖ ,  
  • (EbMS3)   ϖ ,   ω σ ϖ ,   ω ϖ ,   ϰ + ϰ ,   ω   ,  
for all   ϖ ,   ϰ , ω Ξ .  
Mlaiki et al. [11] presented the following notion of CMS in 2018.
Definition 3 ([11]).
Assume that   Ξ   and   σ : Ξ × Ξ 1 ,   .   The pair   Ξ , σ   is called a CMS if a function   : Ξ × Ξ [ 0 ,   )   , verifying the following axioms:
  • (CMS1)   σ ϖ ,   ϰ 0   and   σ ϖ ,   ϰ = 0   if and only if   ϖ = ϰ ,  
  • (CMS2)   σ ϖ ,   ϰ = σ ϰ ,   ϖ ,  
  • (CMS3)   σ ϖ ,   ω σ ϖ ,   ϰ σ ϖ ,   ϰ + σ ϰ ,   ω   σ ϰ ,   ω   ,  
for all   ϖ ,   ϰ , ω Ξ .  
Definition 4 ([16]).
Assume that   Ξ   and   σ , γ : Ξ × Ξ 1 ,   .   The quadruple   Ξ , Δ , σ , γ   is called double CMS (DCMS) if a function   : Ξ × Ξ 0 ,   ,   verifying the following axioms:
  • (DCMS1)   ϖ ,   ϰ 0   and   ϖ ,   ϰ = 0   if and only if   ϖ = ϰ ,  
  • (DCMS2)   ϖ ,   ϰ = ϰ ,   ϖ ,  
  • (DCMS3)   ϖ ,   ω σ ϖ ,   ϰ ϖ ,   ϰ + γ ϰ ,   ω   ϰ ,   ω   ,  
for all   ϖ ,   ϰ , ω Ξ .  
Definition 5.
Let   Ξ , Δ , σ , γ   be a DCMS and   { ϖ n } n N   be a sequence in   Ξ .   Then a sequence   { ϖ n }   is said to be convergent to   ϖ Ξ   if, for each   ε > 0 ,   there exists   N N   with   N = N ( ε )   such that   ϖ n ,   ϖ < ε     for all   n     N .   Further, we can write
lim n ϖ n = ϖ .
a sequence   { ϖ n }   is called Cauchy if, for each   ε > 0 ,   there exists   N N   with   N = N ( ε )   such that   ϖ m ,   ϖ n < ε     for all   m ,   n     N .  
The DCMS   Ξ , Δ , σ , γ   is said to be complete if every Cauchy sequence is convergent in   Ξ   .

3. Main Result

In this section, we will prove common fixed point results in DCMS.
Theorem 1.
Suppose   Ξ , Δ , σ , γ   is a complete DCMS,   T 1 , T 2 : Ξ Ξ   and there exists   k 1 ,   k 2 :   Ξ × Ξ [ 0 , 1 )   such that
(I)
  k 1 T 2 T 1 ϖ ,   ϰ k 1 ( ϖ ,   ϰ )   and   k 1 ϖ ,   T 1 T 2 ϰ   k 1 ϖ ,   ϰ ,  
(II)
  k 2 T 2 T 1 ϖ ,   ϰ k 2 ( ϖ ,   ϰ )   and   k 2 ϖ ,   T 1 T 2 ϰ   k 2 ϖ ,   ϰ ,  
(III)
  k 1 ϖ ,   ϰ + k 2 ϖ ,   ϰ < 1 ,  
(IV)
T 1 ϖ ,   T 2 ϰ k 1 ϖ ,   ϰ ϖ ,   ϰ + k 2 ϖ ,   ϰ ϖ ,   T 1 ϖ ϖ ,   T 2 ϖ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   a sequence   { ϖ j } j 0   is defined as   ϖ 2 j + 1 = T 1 ϖ 2 j   and   ϖ 2 j + 2 = T 2 ϖ 2 j + 1   for every   j 0 .   Suppose that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 k ,  
where   k 1 ( ϖ 0 ,   ϖ 1 ) 1 k 2 ( ϖ 0 ,   ϖ 1 ) = k .   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique fixed point   ϖ * Ξ   such that   T 1 ϖ * = T 2 ϖ * = ϖ * .  
Proof. 
Let   ϖ 0 Ξ .     We construct   { ϖ j }   in   Ξ   by   ϖ 2 j + 1 = T 1 ϖ 2 j   and   ϖ 2 j + 2 = T 2 ϖ 2 j + 1   for each   j 0 .   From Assumption (1), we obtain
ϖ 2 j + 1 , ϖ 2 j + 2 = T 1 ϖ 2 j ,   T 2 ϖ 2 j + 1
k 1 ϖ 2 j ,   ϖ 2 j + 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 2 j ,   ϖ 2 j + 1 ϖ 2 j ,   T 1 ϖ 2 j ϖ 2 j + 1 ,   T 2 ϖ 2 j + 1 1 + ϖ 2 j ,   ϖ 2 j + 1   k 1 T 1 T 2 ϖ 2 j 2 ,   ϖ 2 j + 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 T 1 T 2 ϖ 2 j 2 ,   ϖ 2 j + 1 ϖ 2 j ,   T 1 ϖ 2 j ϖ 2 j + 1 ,   T 2 ϖ 2 j + 1 1 + ϖ 2 j ,   ϖ 2 j + 1 k 1 ϖ 2 j 2 ,   ϖ 2 j + 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 2 j 2 ,   ϖ 2 j + 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 , = k 1 T 2 T 1 ϖ 2 j 4 ,   ϖ 2 j + 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 T 2 T 1 ϖ 2 j 4 ,   ϖ 2 j + 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 k 1 ϖ 2 j 4 ,   ϖ 2 j + 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 2 j 4 ,   ϖ 2 j + 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 k 1 ϖ 0 ,   ϖ 2 j + 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 0 ,   ϖ 2 j + 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 , = k 1 ϖ 0 ,     T 1 T 2 ϖ 2 j 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 0 ,     T 1 T 2 ϖ 2 j 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 k 1 ϖ 0 ,   ϖ 2 j 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 0 ,   ϖ 2 j 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 k 1 ϖ 0 ,   ϖ 1 ϖ 2 j ,   ϖ 2 j + 1 + k 2 ϖ 0 ,   ϖ 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 .
This implies that
ϖ 2 j + 1 , ϖ 2 j + 2 k 1 ϖ 0 ,   ϖ 1 1 k 2 ϖ 0 ,   ϖ 1   ϖ 2 j ,   ϖ 2 j + 1 .
Similarly,
ϖ 2 j + 2 , ϖ 2 j + 3 = T 2 ϖ 2 j + 1 ,   T 1 ϖ 2 j + 2 = T 1 ϖ 2 j + 2 ,   T 2 ϖ 2 j + 1
k 1 ϖ 2 j + 2 ,   ϖ 2 j + 1 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j + 2 ,   ϖ 2 j + 1 ϖ 2 j + 2 ,   T 1 ϖ 2 j + 2 ϖ 2 j + 1 ,   T 1 ϖ 2 j + 1 1 + ϖ 2 j + 2 ,   ϖ 2 j + 1 , = k 1 ϖ 2 j + 2 , T 1 T 2 ϖ 2 j 1 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j + 2 , T 1 T 2 ϖ 2 j 1 ϖ 2 j + 2 ,   ϖ 2 j + 3 ϖ 2 j + 1 ,   ϖ 2 j + 2 1 + ϖ 2 j + 2 ,   ϖ 2 j + 1 k 1 ϖ 2 j + 2 ,   ϖ 2 j 1 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j + 2 ,   ϖ 2 j 1 ϖ 2 j + 2 ,   ϖ 2 j + 3 , = k 1 ϖ 2 j + 2 ,   T 1 T 2 ϖ 2 j 3 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j + 2 ,   T 1 T 2 ϖ 2 j 3 ϖ 2 j + 2 ,   ϖ 2 j + 3 k 1 ϖ 2 j + 2 ,   ϖ 2 j 3 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j + 2 ,   ϖ 2 j 3 ϖ 2 j + 2 ,   ϖ 2 j + 3 k 1 ϖ 2 j + 2 ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j + 2 ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 3 , = k 1 T 2 T 1 ϖ 2 j ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 T 2 T 1 ϖ 2 j ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 3 k 1 ϖ 2 j ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 2 j ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 3 k 1 ϖ 1 ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 1 ,   ϖ 0 ϖ 2 j + 2 ,   ϖ 2 j + 3 = k 1 ϖ 0 ,   ϖ 1 ϖ 2 j + 2 ,   ϖ 2 j + 1 + k 2 ϖ 0 ,   ϖ 1 ϖ 2 j + 2 ,   ϖ 2 j + 3 .
This implies that
ϖ 2 j + 2 , ϖ 2 j + 3 k 1 ϖ 0 ,   ϖ 1 1 k 2 ϖ 0 ,   ϖ 1   ϖ 2 j + 1 ,   ϖ 2 j + 2 = k ϖ 2 j + 1 ,   ϖ 2 j + 2 .
By pursuing in this direction, we obtain
ϖ j , ϖ j + 1 k ϖ j 1 ,   ϖ j = k 2 ϖ 2 j 2 ,   ϖ j 1 k j ϖ 0 ,   ϖ 1 .
Thus,
ϖ j , ϖ j + 1 k j ϖ 0 ,   ϖ 1 .  
Now for   j < m ,   for all   j , m N ,   we deduce that
ϖ j , ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + γ ϖ j + 1 ,   ϖ m ϖ j + 1 ,   ϖ m        σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + γ ϖ j + 1 ,   ϖ m σ ϖ j + 1 ,   ϖ j + 2 ϖ j + 1 ,   ϖ j + 2 + γ ( ϖ j + 1 ,   ϖ m ) γ ϖ j + 2 ,   ϖ m ϖ j + 2 ,   ϖ m        σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + γ ϖ j + 1 ,   ϖ m σ ϖ j + 1 ,   ϖ j + 2 ϖ j + 1 ,   ϖ j + 2 + γ ϖ j + 1 ,   ϖ m γ ϖ j + 2 ,   ϖ m σ ϖ j + 2 ,   ϖ j + 3 ϖ j + 2 ,   ϖ j + 3 + γ ϖ j + 1 ,   ϖ m γ ϖ j + 2 ,   ϖ m γ ϖ j + 3 ,   ϖ m ϖ j + 3 ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 2 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 1 γ ϖ i ,   ϖ m ϖ m 1 ,   ϖ m .
This further implies that
ϖ j , ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 2 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 1 γ ϖ i ,   ϖ m ϖ m 1 ,   ϖ m . σ ϖ j ,   ϖ j + 1 k j ϖ 0 ,   ϖ 1 + i = j + 1 m 2 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 k i ϖ 0 ,   ϖ 1 + i = j + 1 m 1 γ ϖ i ,   ϖ m k m 1 ϖ 0 ,   ϖ 1 . = σ ϖ j ,   ϖ j + 1 k j ϖ 0 ,   ϖ 1 + i = j + 1 m 1 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 k i ϖ 0 ,   ϖ 1 .
Thus
ϖ j , ϖ m σ ϖ j ,   ϖ j + 1 k j ϖ 0 ,   ϖ 1 + i = j + 1 m 1 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 k i ϖ 0 ,   ϖ 1 .  
Let
ψ = i = j + 1 m 1 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 k i ϖ 0 ,   ϖ 1 .
From (4), we obtain
ϖ j , ϖ m ϖ 0 ,   ϖ 1 [ σ ϖ j ,   ϖ j + 1 k j + ( ψ m 1 ψ j ) ] .  
Since   σ ϖ ,   ϰ 1 ,   and by employing the ratio test   lim j ψ j   exists. Thus   { ψ j }   is a Cauchy sequence.
Therefore, taking   j , m +   in inequality (5), we obtain
lim j , m ϖ j ,   ϖ m = 0 .  
Hence,   { ϖ j }   is a Cauchy sequence in DCMS. As   Ξ , Δ , σ , γ   is complete, so there exists   ϖ * Ξ   such that
lim j + ϖ j ,   ϖ * = 0 .  
Hence,   ϖ j ϖ *   as   j + .   From conditions (III) and (IV), we deduce that
ϖ * , T 1 ϖ * σ ϖ * ,   ϖ 2 j + 2 ϖ * ,   ϖ 2 j + 2 + γ ϖ 2 j + 2 ,   T 1 ϖ * ϖ 2 j + 2 ,   T 1 ϖ *    = σ ϖ * ,   ϖ 2 j + 2 ϖ * ,   ϖ 2 j + 2 + γ ϖ 2 j + 2 ,   T 1 ϖ * T 2 ϖ 2 j + 1 ,   T 1 ϖ *    = σ ϖ * ,   ϖ 2 j + 2 ϖ * ,   ϖ 2 j + 2 + γ ϖ 2 j + 2 ,   T 1 ϖ * T 1 ϖ * ,   T 2 ϖ 2 j + 1    = σ ϖ * ,   ϖ 2 j + 2 ϖ * ,   ϖ 2 j + 2    + γ ϖ 2 j + 2 ,   T 1 ϖ * k 1 ϖ * ,   ϖ 2 j + 1 ϖ * ,   ϖ 2 j + 1 + k 2 ϖ * ,   ϖ 2 j + 1 ϖ * ,   T 1 ϖ 2 j + 2 ϖ 2 j + 1 ,   ϖ 2 j + 2 1 + ϖ * ,   ϖ 2 j + 1    = σ ϖ * ,   ϖ 2 j + 2 ϖ * ,   ϖ 2 j + 2    + γ ϖ 2 j + 2 ,   T 1 ϖ * k 1 ϖ * ,   ϖ 2 j + 1 ϖ * ,   ϖ 2 j + 1 + k 2 ϖ * ,   ϖ 2 j + 1 ϖ * ,   T 1 ϖ * ϖ 2 j + 1 ,   ϖ 2 j + 2 1 + ϖ * ,   ϖ 2 j + 1 .
Letting   j +   and applying Equation (7), which contradicts   ϖ * ,   T 1 ϖ * > 0 .   That is,   ϖ * ,   T 1 ϖ * = 0 .   We have   ϖ * = T 1   ϖ * .   On the same lines, we can examine that   ϖ * = T 2 ϖ * .   Hence,   T 1   and   T 2   has a common fixed point   ϖ * .  
Now, we examine the uniqueness of the fixed point   ϖ * .   Let another fixed point   ϖ Ξ   , which is different from   ϖ *   such that   ϖ = T 1 ϖ = T 2 ϖ .   We have
ϖ * ,   ϖ = T 1 ϖ * ,   T 2 ϖ k 1 ϖ * ,   ϖ ϖ * ,   ϖ + k 2 ϖ * ,   ϖ ϖ * ,   T 1 ϖ ϖ ,   T 2 ϖ 1 + ϖ * ,   ϖ = k 1 ϖ * ,   ϖ ϖ * ,   ϖ .
Since   k 1 ϖ * , ϖ 0 , 1 ,   we have   ϖ * , ϖ = 0   . Thus, we obtain   ϖ * = ϖ ,   which shows that   ϖ *   is unique. □
Example 1.
Let   Ξ = 0 , 1 .   Now we define   :   Ξ × Ξ [ 0 , )   by
ϖ , ϰ = ϖ + ϰ 2 ,
where   σ ϖ , ϰ = ϖ + ϰ + 2   and   γ ϖ , ϰ = ϖ 2 + ϰ 2 + 1   for all   ϖ , ϰ Ξ .   Now, we define   T 1 ,   T 2 :   Ξ Ξ     by   T 1 ϖ = ϖ 3 ,     and   T 2 ϖ = ϖ 4 ,   for   ϖ R .   Choose   k 1 , k 2 :   Ξ × Ξ [ 0 , 1 )   by
k 1 ϖ ,   ϰ = 16 + ϖ + ϰ 144 a n d   k 2 ϖ ,   ϰ = 15 + ϖ + ϰ 144 .
Then, evidently,
k 1 ϖ ,   ϰ + k 2 ϖ ,   ϰ < 1 .
Now,
k 1 T 2 T 1 ϖ ,   ϰ = 1 9 + ϖ 1726 + ϰ 144 16 + ϖ + ϰ 144 = k 1 ϖ ,   ϰ ,
and
k 1 ϖ , T 2 T 1   ϰ = 1 9 + ϖ 144 + ϰ 1726 16 + ϖ + ϰ 144 = k 1 ϖ ,   ϰ ,
and
k 2 T 2 T 1 ϖ ,   ϰ = 5 46 + ϖ 1726 + ϰ 144 15 + ϖ + ϰ 144 = k 1 ϖ ,   ϰ , k 2 ϖ , T 2 T 1   ϰ = 5 46 + ϖ 144 + ϰ 1726 15 + ϖ + ϰ 144 = k 1 ϖ , T 2 T 1   ϰ .
Take   ϖ 0 = 0 ,   so (2) is satisfied. Let   ϖ ,   ϰ Ξ   . Then,
T 1 ϖ ,   T 2 ϰ = 4 ϖ + 3 ϰ 2 144 4 ϖ + 4 ϰ 2 144 16 + ϖ + ϰ 144 ϖ + ϰ 2 + 15 + ϖ + ϰ 144   5 ϖ 4 2 6 ϰ 4 2 1 + ϖ + ϰ 2 , k 1 ϖ ,   ϰ ϖ , ϰ + k 2 ϖ ,   ϰ   ϖ ,   T 1 ϖ ( ϰ ,   T 2 ϰ ) 1 + ( ϖ ,   ϰ ) .
Hence, Theorem 1 is fulfilled and   ϖ * = 0 Ξ   is a fixed point, that is,   T 1 ϖ * = T 2 ϖ * = ϖ * .  
By setting   T 1 = T 2 = T   in Theorem 1, we have the following corollary.
Corollary 1.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T : Ξ Ξ   and there exists   k 1 ,   k 2 :   Ξ × Ξ [ 0 , 1 )   such that
(I)
  k 1 T ϖ ,   ϰ k 1 ( ϖ ,   ϰ )   and   k 1 ϖ ,   T ϰ   k 1 ϖ ,   ϰ ,  
(II)
  k 2 T ϖ ,   ϰ k 2 ( ϖ ,   ϰ )   and   k 2 ϖ ,   T ϰ   k 2 ϖ ,   ϰ ,  
(III)
  k 1 ϖ ,   ϰ + k 2 ϖ ,   ϰ < 1 ,  
(IV)
  T ϖ ,   T ϰ k 1 ϖ ,   ϰ ϖ ,   ϰ + k 2 ϖ ,   ϰ ϖ ,   T ϖ ϖ ,   T ϖ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   a sequence   { ϖ j } j 0   is defined as   ϖ j + 1 = T ϖ j   for each   j 0 .   Assume that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 k ,
where   k 1 ( ϖ 0 ,   ϖ 1 ) 1 k 2 ( ϖ 0 ,   ϖ 1 ) = k .   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T ϖ * = ϖ * .  

4. Deduced Results

Theorem 2.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T 1 , T 2 : Ξ Ξ   and there exists   τ 1 ,   τ 2 :   Ξ [ 0 , 1 )   such that
(I)
  τ 1 T 1 ϖ ,   ϰ τ 1 ( ϖ ,   ϰ )   and   τ 2 T 1 ϖ   τ 1 ϖ ,  
(II)
  τ 1 T 2 ϖ τ 1 ( ϖ )   and   τ 2 T 2 ϖ   τ 2 ϖ ,  
(III)
  k 1 + k 2 ϖ < 1 ,  
(IV)
  T 1 ϖ ,   T 2 ϰ τ 1 ϖ ,   ϰ ϖ ,   ϰ + τ 2 ϖ ,   ϰ ϖ ,   T 1 ϖ ϰ ,   T 2 ϰ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   a sequence   { ϖ j } j 0   is defined as   ϖ 2 j + 1 = T 1 ϖ 2 j   and   ϖ 2 j + 2 = T 2 ϖ 2 j + 1   for every   j 0 .   Let
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 τ ,
where   τ 1 ( ϖ 0 ,   ) 1 τ 2 ( ϖ 0 ) = τ .   Furthermore, let   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T 1 ϖ * = T 2 ϖ * = ϖ * .  
Proof. 
Define   k 1 ,   k 2 :   Ξ × Ξ [ 0 , 1 )   by   τ 1 ϖ ,   ϰ   τ 1 ϖ     and   k 2 ϖ ,   ϰ   τ 2 ϖ ,   f o r   a l l   ϖ ,   ϰ Ξ .  
(i)
  k 1 T 2 T 1 ϖ , ϰ = τ 1 T 2 T 1 ϖ τ 1 T 1 ϖ τ 1 ϖ = k 1 ( ϖ , ϰ )   and   k 1 ϖ , T 1 T 2 ϰ = τ 1 ϖ = τ 1 ϖ , ϰ ,  
(ii)
  k 1 T 2 T 1 ϖ ,   ϰ = τ 2 T 2 T 1 ϖ τ 2 T 1 ϖ τ 2 ϖ = k 1 ( ϖ ,   ϰ )   and   k 2 ϖ , T 1 T 2   ϰ = τ 2 ϖ = τ 12 ϖ ,   ϰ ,  
(iii)
  k 1 ϖ ,   ϰ + k 2 ϖ ,   ϰ = τ 1 ϖ + τ 2 ϖ < 1 ,  
(iv)
  T 1 ϖ ,   T 2 ϰ τ 1 ϖ ϖ ,   ϰ + τ 2 ϖ ϖ ,   T 1 ϖ ϰ ,   T 2 ϰ 1 + ϖ , ϰ  
= k 1 ϖ , ϰ ϖ ,   ϰ + k 2 ϖ ,   ϰ ϖ ,   T 1 ϖ ϰ ,   T 2 ϰ 1 + ϖ , ϰ .
By Theorem 2,   T 1   a n d   T 2   have a unique common fixed point. □
Corollary 2.
Suppose     Ξ , Δ , σ , γ   be a complete DCMS,   T : Ξ Ξ   and there exists   τ 1 ,   τ 2 :   Ξ [ 0 , 1 )   such that
(I)
  τ 1 T ϖ ,   ϰ τ 1 ( ϖ ,   ϰ )   and   τ 2 T ϖ   τ 1 ϖ ,  
(II)
  τ 1 + τ 2 ϖ < 1 ,  
(III)
  T ϖ ,   T ϰ τ 1 ϖ ,   ϰ ϖ ,   ϰ + τ 2 ϖ ,   ϰ ϖ ,   T ϖ ϰ ,   T ϰ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,   ( 2 )  
for   ϖ 0 Ξ ,   we set   τ 1 ( ϖ 0 ,   ) 1 τ 2 ( ϖ 0 ) = τ .   Assume that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 τ ,
where   ϖ j + 1 = T ϖ j   for each   j 0 .   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T ϖ * = ϖ * .  
Proof. 
Immediate by considering   T 1 = T 2 = T   in the Theorem 2. □
Theorem 3.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T : Ξ Ξ   and there exists   τ 1 ,   τ 2 :   Ξ [ 0 , 1 )   such that
(I)
  τ 1 T j ϖ ,   ϰ τ 1 ( ϖ ,   ϰ )   and   τ 2 T j ϖ   τ 1 ϖ ,  
(II)
  τ 1 + τ 2 ϖ < 1 ,  
(III)
  T j ϖ ,   T j ϰ τ 1 ϖ ,   ϰ ϖ ,   ϰ + τ 2 ϖ ,   ϰ ϖ ,   T j ϖ ϰ ,   T j ϰ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,   ( 3 )  
for   ϖ 0 Ξ ,   we set   τ 1 ( ϖ 0 ,   ) 1 τ 2 ( ϖ 0 ) = τ .   Assume that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 τ ,
where   ϖ j + 1 = T ϖ j   for all   j 0 .   Furthermore, let   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T ϖ * = ϖ * .  
Proof. 
Using Theorem 1, we obtain   T j ϖ * = ϖ * .   Now, as
T j   ( T ϖ * ) = T ( T j ϖ * ) = T ϖ * .
So,   T j   has a fixed point   T ϖ * .   Hence,   T ϖ * = ϖ * .   Meanwhile   T j   has a unique fixed point, so   T   has a fixed point   ϖ * .   □
Corollary 3.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T 1 , T 2 : Ξ Ξ   and there exists   γ 1 ,   γ 2 [ 0 , 1 )   with   γ 1 + γ 2 < 1   such that
T 1 ϖ ,   T 2 ϰ γ 1 ϖ ,   ϰ + γ 2 ϖ ,   T 1 ϖ ϰ ,   T 2 ϰ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   a sequence   { ϖ j } j 0   is generated as   ϖ 2 j + 1 = T 1 ϖ 2 j   and   ϖ 2 j + 2 = T 2 ϖ 2 j + 1   for every   j 0 .   Let
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 Ω ,
where   γ 1 1 γ 2 = Ω .   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T 1 ϖ * = T 2 ϖ * = ϖ * .  
Proof. 
Immediate by letting   γ 1 . = γ 1   and   γ 2 . = γ 2   in Theorem 2. □
Corollary 4.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T : Ξ Ξ   and there exist   γ 1 ,   γ 2 [ 0 , 1 )   with   γ 1 + γ 2 < 1   such that
T ϖ ,   T ϰ γ 1 ϖ ,   ϰ + γ 2 ϖ ,   T ϖ ϰ ,   T ϰ 1 + ϖ ,   ϰ ,   f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   we set   γ 1 1 γ 2 = Ω .   Suppose that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 Ω ,  
where   ϖ j + 1 = T ϖ j   for all   j 0 .   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T ϖ * = ϖ * .  
Corollary 5.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T : Ξ Ξ   and there exists   γ 1 ,   γ 2 [ 0 , 1 )   with   γ 1 + γ 2 < 1   such that
T j ϖ ,   T j ϰ γ 1 ϖ ,   ϰ + γ 2 ϖ ,   T j ϖ ϰ ,   T j ϰ 1 + ϖ ,   ϰ ,    f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   we set   γ 1 1 γ 2 = Ω .   Assume that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 Ω ,
where   ϖ j + 1 = T ϖ j   for all   j 0   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T ϖ * = ϖ * .  
Corollary 6.
Suppose     Ξ , Δ , σ , γ   is a complete DCMS,   T : Ξ Ξ   and there exist   γ 1 , γ 2   [ 0 , 1 )   with   γ 1 + γ 2 < 1   such that
T j ϖ ,   T j ϰ γ 1 ϖ ,   ϰ ,    f o r   a l l   ϖ ,   ϰ Ξ ,  
for   ϖ 0 Ξ ,   we set   γ 1 1 γ 1 = Ω .   Suppose that
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 Ω ,
where   ϖ j + 1 = T ϖ j   for all   j 0   Moreover, assume that   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exist and are finite, then there exists a unique point   ϖ * Ξ   such that   T ϖ * = ϖ * .  

5. Application in Graphs

Suppose    Ξ , Δ , σ , γ   is a complete DCMS and a directed graph   G  . Assume   G 1   is a graph that we obtain from   G   by altering the direction of   E G .   Thus,
E G 1 = ϖ ,   ϰ   Ξ × Ξ : ϰ ,   ϖ E G .
Definition 6.
An arbitrary point   ϖ Ξ   is a common fixed point of   T 1 ,   T 2 ,   if   T 1 ϖ = T 2 ϖ = ϖ .   By   C F i x T 1 ,   T 2 ,   we represent the set of all common fixed point of   T 1 ,   T 2 ,   i.e.,
C F i x T 1 ,   T 2 = ϖ Ξ :   T 1 ϖ = T 2 ϖ = ϖ .
Definition 7.
Suppose that   T 1 ,   T 2 :   Ξ Ξ   are two mappings on complete DCMS   Ξ , Δ , σ , γ   equipped with a directed graph   G   . For any   ϖ Ξ ,     T 1 ,   T 2   is called a   G Orbital cyclic pair, if
ϖ , T 1 ϖ E G T 1 ϖ , T 2 T 1 ϖ E G , ϖ , T 2 ϖ E G T 2 ϖ , T 1 T 1 ϖ E G .
Consider the below sets
Ξ T 1 = ϖ Ξ : ϖ ,   T 1 ϖ E G , Ξ T 2 = ϖ Ξ : ϖ ,   T 2 ϖ E G .
Remark 1.
If the pair   T 1 ,   T 2   is a   G Orbital cyclic pair, then   Ξ T 1 ϕ   i f   a n d   o n l y   i f   Ξ T 2 ϕ .  
Proof. 
Let   ϖ 0 Ξ T 1 .   Then,   ϖ 0 ,   T 1 ϖ 0 E G T 1 ϖ 0 , T 2   T 1 ϖ 0 E G .   If   ϖ 1 = T 1 ϖ 0 ,   then we obtain   ϖ 1 ,   T 2 ϖ 1 E G ,   thus   Ξ T 2 ϕ .   □
Theorem 4.
Let   Ξ , Δ , σ , γ   be a complete DCMS equipped with a directed graph   G   and   T 1 , T 2 :   Ξ Ξ   is a   G Orbital cyclic pair. Suppose there exist     τ 1 [ 0 , 1 )   such that
(i)
  Ξ T 1 ϕ ,  
(ii)
for all   ϖ Ξ T 1   and   ϰ Ξ T 2 ,  
T 1 ϖ ,   T 2 ϰ τ 1 max ϖ ,   ϰ , ϖ ,   T 1 ϖ , ϰ ,   T 2 ϰ ;  
(iii)
for all   ϖ n j N Ξ ,   one has   ϖ j ,   ϖ j + 1 E G ,  
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 τ   ,  
where   τ = τ 1 1 τ 1  
(iv)
  T 1   and   T 2   are continuous, or for all   ( ϖ j ) j N Ξ ,   with   ϖ j ϖ   as   j + ,   and   ϖ j , ϖ j + 1 E ( G )   for   j N ,   we have   ϖ Ξ T 1 Ξ T 2 .   In these conditions,   C F i x T 1 , T 2 ϕ ;  
(v)
For all   ϖ   Ξ ,   we have   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exists and finite;
(vi)
If   ϖ * ,   ϖ C F i x T 1 , T 2   implies   ϖ *   Ξ T 1   and   ϖ Ξ T 2 ,   then the pair   T 1 ,   T 2   has a unique common fixed point.
Proof. 
Let   ϖ 0 Ξ T 1 .   Thus   ( ϖ 0 ,   T 1 ϖ 0 ) E ( G )   . As the pair   T 1 , T 2   is a   G   Orbital cyclic, we obtain   T 1 ϖ 0 ,   T 2 T 1 ϖ 0 E G .   Construct   ϖ 1   by   ϖ 1 = T 1 ϖ 0 ,   we have   ϖ 1 ,   T 2 ϖ 1 E ( G )   and from here   T 2 ϖ 1 ,   T 1 T 2 ϖ 1 E G .   Denoting by   ϖ 2 = T 2 ϖ 1 ,   we have   ϖ 2 ,   T 1 ϖ 2 E G .   In the same manner, we obtain a sequence   ( ϖ j ) j N   with   ϖ 2 j = T 2 ϖ 2 j 1   and   ϖ 2 j + 1 = T 1 ϖ 2 j ,   such that   ϖ 2 j , ϖ 2 j + 1 E G .   we assume that   ϖ j ϖ j + 1 .   If, there exist    j 0 N   such that   ϖ j 0 = ϖ j 0 + 1 ,   then from the fact that   E G ,   ϖ j 0 , ϖ j 0 + 1 E G     and   ϖ * = ϖ j 0   is a fixed point of   T 1 .   Now, for   ϖ * C F i x T 1 , T 2   , we deliberate the two cases for   j 0 .   If   j 0 = 2 j ,   then   ϖ 2 j = ϖ 2 j + 1 = T 1 ϖ 2 j   and thus,   ϖ 2 j     is a fixed point of   T 1 .   Assume that   ϖ 2 j = ϖ 2 j + 1 = T 1 ϖ 2 j   but   T 1 ϖ 2 j ,   T 2 ϖ 2 j + 1 > 0 ,   and let   ϖ = ϖ 2 j   Ξ T 1   and   ϰ = ϖ 2 j + 1 Ξ T 2 .   So
0 < ϖ 2 j + 1 ,   ϖ 2 j + 2 = T 1 ϖ 2 j ,   T 2 ϖ 2 j + 1    τ 1 max ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j ,   T 1 ϖ 2 j , ϖ 2 j + 1 ,   T 2 ϖ 2 j + 1 ;      = τ 1 max ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j + 1 ,   ϖ 2 j + 2 ;    = τ 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 .
This is a contradiction of the fact   τ 1 < 1 .   Therefore,   ϖ 2 j   is a fixed point of   T 2  . In the same manner, if   j 0   is an odd number, then there exists    ϖ * Ξ   such that   T 1 ϖ * = T 2 ϖ * = ϖ * .   So, we assume that   ϖ j ϖ j + 1   for each   j N .   Now, we examine that   ( ϖ j ) j N   is a Cauchy sequence. We discuss the below two cases:
Case 1.
0 < ϖ 2 j + 1 ,   ϖ 2 j + 2 = T 1 ϖ 2 j ,   T 2 ϖ 2 j + 1 τ 1 max ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j ,   T 1 ϖ 2 j , ϖ 2 j + 1 ,   T 2 ϖ 2 j + 1   = τ 1 max ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j + 1 ,   ϖ 2 j + 2 ; = τ 1 max ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j + 1 ,   ϖ 2 j + 2 ; τ 1 ϖ 2 j ,   ϖ 2 j + 1 + ϖ 2 j + 1 ,   ϖ 2 j + 2 ,
that is
1 τ 1 ϖ 2 j + 1 ,   ϖ 2 j + 2 τ 1 ϖ 2 j ,   ϖ 2 j + 1 ,
which implies
ϖ 2 j + 1 ,   ϖ 2 j + 2 τ 1 1 τ 1 ϖ 2 j ,   ϖ 2 j + 1  
Case 2.
  ϖ = ϖ 2 j   Ξ T 1   and   ϰ = ϖ 2 j 1 Ξ T 2 .  
0 < ϖ 2 j + 1 ,   ϖ 2 j = T 1 ϖ 2 j ,   T 2 ϖ 2 j 1 τ 1 max ϖ 2 j ,   ϖ 2 j 1 , ϖ 2 j ,   T 1 ϖ 2 j , ϖ 2 j 1 ,   T 2 ϖ 2 j 1   = τ 1 max ϖ 2 j ,   ϖ 2 j 1 , ϖ 2 j ,   ϖ 2 j + 1 , ϖ 2 j 1 ,   ϖ 2 j ; = τ 1 max ϖ 2 j 1 ,   ϖ 2 j , ϖ 2 j ,   ϖ 2 j + 1 ; τ 1 ϖ 2 j 1 ,   ϖ 2 j + ϖ 2 j ,   ϖ 2 j + 1 ,
that is
1 τ 1 ϖ 2 j + 1 ,   ϖ 2 j τ 1 ϖ 2 j ,   ϖ 2 j 1 ,
which implies
ϖ 2 j ,   ϖ 2 j + 1 τ 1 1 τ 1 ϖ 2 j 1 ,   ϖ 2 j .  
Since   τ = τ 1 1 τ 1 ,   we have
ϖ j ,   ϖ j + 1 τ ϖ j 1 ,   ϖ j .  
Thus, we have
ϖ j ,   ϖ j + 1 τ ϖ j 1 ,   ϖ j τ 2 ϖ j 2 ,   ϖ j 1 τ j ϖ 0 ,   ϖ 1 .
For each   j , m N j < m ,     we have
ϖ j , ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + γ ϖ j + 1 ,   ϖ m ϖ j + 1 ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + γ ϖ j + 1 ,   ϖ m σ ϖ j + 1 ,   ϖ j + 2 ϖ j + 1 ,   ϖ j + 2 + γ ϖ j + 1 ,   ϖ m γ ϖ j + 2 ,   ϖ m ϖ j + 2 ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + γ ϖ j + 1 ,   ϖ m σ ϖ j + 1 ,   ϖ j + 2 ϖ j + 1 ,   ϖ j + 2 + γ ϖ j + 1 ,   ϖ m γ ϖ j + 2 ,   ϖ m σ ϖ j + 2 ,   ϖ j + 3 ϖ j + 2 ,   ϖ j + 3 + γ ϖ j + 1 ,   ϖ m γ ϖ j + 2 ,   ϖ m γ ϖ j + 3 ,   ϖ m ϖ j + 3 ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 2 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 1 γ ϖ i ,   ϖ m ϖ m 1 ,   ϖ m .
This further implies that
ϖ j , ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 2 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ j ,   ϖ j + 1 ϖ j ,   ϖ j + 1 + i = j + 1 m 1 γ ϖ i ,   ϖ m ϖ m 1 ,   ϖ m σ ϖ j ,   ϖ j + 1 τ j ϖ 0 ,   ϖ 1 + i = j + 1 m 2 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 τ i ϖ 0 ,   ϖ 1 + i = j + 1 m 1 γ ϖ i ,   ϖ m τ m 1 ϖ 0 ,   ϖ 1 = σ ϖ j ,   ϖ j + 1 τ j ϖ 0 ,   ϖ 1 + i = j + 1 m 1 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 τ i ϖ 0 ,   ϖ 1 .
ϖ j , ϖ m σ ϖ j ,   ϖ j + 1 k j ϖ 0 ,   ϖ 1 + i = j + 1 m 1 t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 k i ϖ 0 ,   ϖ 1 .  
Let
ψ v = i = j + 1 v t = j + 1 i γ ϖ t ,   ϖ m σ ϖ i ,   ϖ i + 1 k i ϖ 0 ,   ϖ 1 .
Then, from (13), we obtain
ϖ j , ϖ m ϖ 0 ,   ϖ 1 [ τ j σ ϖ j ,   ϖ j + 1 + ( ψ m 1 ψ j ) ] .  
Since   σ ϖ ,   ϰ 1 ,   and by employing the ratio test, then   lim j ψ j   exists. Clearly, letting   j , m +   in (14), we obtain
lim j , m ϖ j ,   ϖ m = 0 .  
Hence,   { ϖ j }   is a Cauchy sequence in   Ξ ,   , σ , γ .   So, there exist   s   ϖ * Ξ ,   we have
lim j + ϖ j ,   ϖ * = 0 .  
That is   ϖ j ϖ *   as   j + .   It is obvious that
lim j + ϖ 2 j = lim j + ϖ 2 j + 1 = ϖ * .  
As   T 1   and   T 2   are continuous, so we have
ϖ * = lim j + ϖ 2 j + 1 = lim j + T 1 ϖ 2 j = T 1 ϖ * , ϖ * = lim j + ϖ 2 j + 2 = lim j + T 2 ϖ 2 j + 1 = T 2 ϖ * ,
Now letting   ϖ = ϖ *   Ξ T 1   and   ϰ = ϖ 2 j + 2   Ξ T 2 ,   we have
0 < T 1 ϖ * ,   ϖ 2 j + 2 = T 1 ϖ * ,   T 2 ϖ 2 j + 1 τ 1 max ϖ * ,   ϖ 2 j + 1 ,   ϖ * , T 1 ϖ * ,   ϖ 2 j + 1 ,   T 2 ϖ 2 j + 1 , = τ 1 max ϖ * ,   ϖ 2 j + 1 ,   ϖ * , T 1 ϖ * ,   ϖ 2 j + 1 ,   ϖ 2 j + 2 .
Taking   j +   and by (17), it is immediate that   ϖ * , T 1 ϖ * = 0 .   This yields that   ϖ * = T 1 ϖ * .   Similarly, suppose that   ϖ = ϖ 2 j + 1   Ξ T 1   and   ϰ = ϖ *   Ξ T 2 ,   we have
0 < ϖ 2 j + 2 , T 2 ϖ * = T 1 ϖ 2 j ,   T 2 ϖ * τ 1 max ϖ 2 j , ϖ * ,   ϖ 2 j , T 1 ϖ 2 j ,   ϖ * ,   T 2 ϖ * , = τ 1 max ϖ 2 j ,   ϖ * ,   ϖ 2 j , ϖ 2 j + 1 ,   ϖ * ,   T 2 ϖ * .
Taking   j +   and by applying (17), we obtain   ϖ * , T 2 ϖ * = 0 .   This yields that   ϖ * = T 11 i   a v e   t h a t   c o n c l u d e   t h a t   a s e s   f o r   2 ϖ * .  
Corollary 7.
Let     Ξ , Δ , σ , γ   be a complete DCMS equipped with a directed graph   G   and   T :   Ξ Ξ   is a   G   Orbital cyclic. Assume that there exist   s   τ 1 [ 0 , 1 )   such that
(i)
  Ξ T ϕ ,  
(ii)
for all   ϖ , ϰ Ξ T ,  
T ϖ ,   T ϰ τ 1 max ϖ ,   ϰ , ϖ ,   T ϖ , ϰ ,   T ϰ ,  
(iii)
for all   ϖ n j N Ξ ,   one has   ϖ j ,   ϖ j + 1 E G ,  
sup m 1 lim i σ ϖ i + 1 ,   ϖ i + 2 γ ϖ i + 1 ,   ϖ m σ ϖ i ,   ϖ i + 1 < 1 τ   ,  
where   τ = τ 1 1 τ 1 ,  
(iv)
  T   is continuous, or for all   ( ϖ j ) j N Ξ ,   with   ϖ j ϖ   as   j + ,   and   ϖ j , ϖ j + 1 E ( G )   for   j N ,   we obtain   ϖ Ξ T ,  
(v)
for all   ϖ   Ξ ,   we assume   lim j + σ ϖ j ,   ϖ , lim j + σ ϖ , ϖ j ,     lim j + γ ϖ j ,   ϖ   and   lim j + γ ϖ , ϖ j   exists and are finite,
then   T     has a unique fixed point.
Example 2.
Suppose   Ξ = 0 , 1 , 2 , 3 , 4 .   Define   : Ξ × Ξ [ 0 , + )   by
ϖ ,   ϰ = ϖ ϰ 2
and   σ :   Ξ × Ξ [ 1 , + )   by
σ ϖ ,   ϰ = 1 + ϖ + ϰ
and
γ ϖ ,   ϰ = 2 + ϖ 2 + ϰ 2
for all   ϖ ,   ϰ Ξ .   Then,   Ξ , Δ , σ , γ   is a complete DCMS. Now define   T :   Ξ Ξ   by   T ϖ = 0   f o r   ϖ 0 , 1 ,   and   T ϖ = 1   f o r   ϖ 2 , 3 .  
Moreover, let a directed graph by   G = 0 , 1 , 0,2 , 2 , 3 , 0,0 , 1,1 , 2,2 3,3 .   Then, Corollary 3 is fulfilled with   τ 1 = 1 3   and   T   has a unique fixed point   ϖ * = 0 .  

6. Application to Integral Equations

In this part, we examine the solution of the following Fredholm equation:
ϖ t = 0 1 K t , s ,   ϖ t d s ,    
for all   t 0 , 1 ,   where   K t , s , ϖ t   is a continuous function from   0 , 1 × [ 0 , 1 ]   into   R  . Suppose   Ξ = C 0 , 1 , R .   Define   : Ξ × Ξ [ 1 , + )   by
ϖ ,   ϰ = sup t [ 0 , 1 ] ϖ t + ϰ t 2 .
Then,   Ξ , Δ , σ , γ   is a complete DCMS with   σ ϖ , ϰ = 1 + ϖ + ϰ ,   and   γ ϖ , ϰ = 2 + ϖ 2 + ϰ 2 .  
Theorem 5.
Assume that
(a)
  K t , s , ϖ t + K t , s , ϰ t τ 1 sup t 0 , 1 ϖ t + ϰ t ϖ t + ϰ t
for some   τ 1 Ξ 0 , 1 ;
(b)
  K t , s ,   0 1 K t , s ,   ϖ t d s ,     < K t , s , ϖ t
for all   t , s 0 , 1 .   Then, there is a unique solution to the integral Equation (19).
Proof. 
Define the mapping   T : Ξ Ξ   by
T ϖ t = 0 1 K t , s ,   ϖ t d s .
Then
T ϖ , T ϰ = sup t [ 0 , 1 ] ϖ t + ϰ t 2 .
Now
T ϖ t , T ϰ t = T ϖ t + T ϰ t 2 = 0 1 K t , s ,   ϖ t d s + 0 1 K t , s ,   ϰ t d s 2 0 1 K t , s ,   ϖ t d s + 0 1 K t , s ,   ϰ t d s 2 = 0 1 K t , s ,   ϖ t + K t , s ,   ϰ t d s 2 = 0 1 τ 1 sup t 0 , 1 ϖ t + ϰ t ϖ t + ϰ t 2 τ 1 sup t 0 , 1 ϖ t + ϰ t ϖ t ,   ϰ t .
Also, we observe that
σ ϖ , ϰ = 1 τ 1 sup t 0 , 1 ϖ t + ϰ t .
Hence, all of the requirements for Corollary 6 have been met. As a result, Equation (19) has a unique solution. □

7. Conclusions

In this manuscript, we proved two common fixed point results for generalized rational-type contractions under some conditions in the context of DCMS. Further, we extended and proved rational-type contractions equipped with graphs in DCMS. Several non-trivial examples and an application are presented to show the validity of the main results. The given results are improved and generalized to the existing ones in [11,18,20]. These results can be generalized by utilizing the notions in [19,21,22,23,24,25,26].

Author Contributions

Conceptualization, K.A., I.K.A. and U.I.; methodology, I.K.A. and U.I.; software, K.A. and G.M.; validation, U.I., S.A., I.K.A. and G.M.; formal analysis, S.A.; investigation, U.I. and I.K.A.; resources, K.A. and U.I.; data curation, G.M.; writing—original draft preparation, K.A. and U.I.; writing—review and editing, I.K.A. and U.I.; visualization, G.M. and S.A.; supervision, I.K.A. and U.I.; project administration, K.A., I.K.A. and G.M.; funding acquisition, K.A., S.A., I.K.A. and U.I. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data will be available upon request from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kilbas, A.A.; Srivastava, M.H.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  2. Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Willey Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
  3. Karapinar, E.; Abdeljawad, T.; Jarad, F. Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Differ. Equ. 2019, 2019, 421. [Google Scholar] [CrossRef]
  4. Fréchet, M.M. On some points of functional calculus. Rendiconti del Circolo Matematico di Palermo (1884–1940) 1906, 22, 1–72. [Google Scholar] [CrossRef]
  5. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
  6. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex A 2006, 7, 289–297. [Google Scholar]
  7. Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 2011, 32, 243–253. [Google Scholar] [CrossRef]
  8. Mitrovic, Z.D.; Radenovic, S. The Banach and Reich contractions in bv(s)-metric spaces. J. Fix. Point Theory Appl. 2017, 19, 3087–3095. [Google Scholar] [CrossRef]
  9. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
  10. Kamran, T.; Samreen, M.; Ain, Q.U. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef]
  11. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
  12. Mustafa, Z.; Parvaneh, V.; Jaradat, M.M.; Kadelburg, Z. Extended rectangular b-metric spaces and some fixed point theorems for contractive mappings. Symmetry 2019, 11, 594. [Google Scholar] [CrossRef]
  13. Lateef, D. Kannan fixed point theorem in c-metric spaces. J. Math. Anal. 2019, 10, 34–40. [Google Scholar]
  14. Abuloha, M.; Rizk, D.; Abodayeh, K.; Mlaiki, N.; Abdeljawad, T. New results in controlled metric type spaces. J. Math. 2021, 2021, 5575512. [Google Scholar] [CrossRef]
  15. Hussain, S. Fixed point theorems for nonlinear contraction in controlled metric type space. Appl. Math. E-Notes 2021, 21, 2145–2165. [Google Scholar]
  16. Mlaiki, N.; Souayah, N.; Abdeljawad, T.; Aydi, H. A new extension to the controlled metric type spaces endowed with a graph. Adv. Differ. Equ. 2021, 2021, 94. [Google Scholar] [CrossRef]
  17. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
  18. Lateef, D. Fisher type fixed point results in controlled metric spaces. J. Math. Comput. Sci. 2020, 20, 234–240. [Google Scholar] [CrossRef]
  19. Farhan, M.; Ishtiaq, U.; Saeed, M.; Hussain, A.; Al Sulami, H. Reich-Type and (α, F)-Contractions in Partially Ordered Double-Controlled Metric-Type Spaces with Applications to Non-Linear Fractional Differential Equations and Monotonic Iterative Method. Axioms 2022, 11, 573. [Google Scholar] [CrossRef]
  20. Ma, Z.; Ahmad, J.; Al-Mazrooei, A.E. Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Math. 2023, 8, 529–549. [Google Scholar] [CrossRef]
  21. Farheen, M.; Ahmed, K.; Javed, K.; Parvaneh, V.; Din, F.U.; Ishtiaq, U. Intuitionistic Fuzzy Double Controlled Metric Spaces and Related Results. Secur. Commun. Netw. 2022, 2022, 6254055. [Google Scholar] [CrossRef]
  22. Ishtiaq, U.; Saleem, N.; Uddin, F.; Sessa, S.; Ahmad, K.; di Martino, F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry 2022, 14, 2364. [Google Scholar] [CrossRef]
  23. Uddin, F.; Ishtiaq, U.; Hussain, A.; Javed, K.; Al Sulami, H.; Ahmed, K. Neutrosophic Double Controlled Metric Spaces and Related Results with Application. Fractal Fract. 2022, 6, 318. [Google Scholar] [CrossRef]
  24. Uddin, F.; Ishtiaq, U.; Saleem, N.; Ahmad, K.; Jarad, F. Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS Math. 2022, 7, 20711–20739. [Google Scholar] [CrossRef]
  25. Latif, R.M. The Neutrosophic Delta-Beta Connected Topological Spaces. Int. J. Emerg. Multidiscip. Math. 2022, 1, 52–61. [Google Scholar]
  26. Touqeer, M.; Rasool, E. Multiple Attribute Decision Making Based on Interval-Valued Neutrosophic Trapezoidal Fuzzy Numbers and its Application in the Diagnosis of Viral Flu. Int. J. Emerg. Multidiscip. Math. 2022, 1, 124–144. [Google Scholar] [CrossRef]
  27. Bousselsal, M.; Mostefaoui, Z. Some common fixed point results in partial metric spaces for generalized rational type contraction mappings. Nonlinear Funct. Anal. Appl. 2015, 20, 43–54. [Google Scholar]
  28. Rao, K.P.R.; Shatanawi, W.; Kishore, G.N.V.; Abodayeh, K.; Prasad, D.R. Existence and uniqueness of Suzuki type results in Sb-metric spaces with application to integral equations. Nonlinear Funct. Anal. Appl. 2018, 23, 225–245. [Google Scholar]
  29. Chandok, S.; Kim, J.K. Fixed point theorem in ordered metric spaces for generalized contraction mappings satisfying rational type expressions. Nonlinear Funct. Anal. Appl. 2012, 17, 301–306. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ahmad, K.; Murtaza, G.; Alshaikey, S.; Ishtiaq, U.; Argyros, I.K. Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application. Axioms 2023, 12, 941. https://doi.org/10.3390/axioms12100941

AMA Style

Ahmad K, Murtaza G, Alshaikey S, Ishtiaq U, Argyros IK. Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application. Axioms. 2023; 12(10):941. https://doi.org/10.3390/axioms12100941

Chicago/Turabian Style

Ahmad, Khaleel, Ghulam Murtaza, Salha Alshaikey, Umar Ishtiaq, and Ioannis K. Argyros. 2023. "Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application" Axioms 12, no. 10: 941. https://doi.org/10.3390/axioms12100941

APA Style

Ahmad, K., Murtaza, G., Alshaikey, S., Ishtiaq, U., & Argyros, I. K. (2023). Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application. Axioms, 12(10), 941. https://doi.org/10.3390/axioms12100941

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop