A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Chu, Y.; Khan, T.U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Sunshine North, VIC, Australia, 2000. [Google Scholar]
- Fahad, A.; Butt, S.I.; Bayraktar, B.; Anwar, M.; Wang, Y. Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators. Axioms 2023, 12, 691. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Yıldız, Ç.; Yergöz, B.; Yergöz, A. On new general inequalities for s-convex functions and their applicaitons. J. Inequal. Appl. 2023, 2023, 11. [Google Scholar] [CrossRef]
- Rapeanu, E. Continuation method for boundary value problems with uniform elliptical operators. J. Sci. Art 2011, 3, 273–277. [Google Scholar]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Rapeanu, E. Approximation by projection of some operators. Anal. Univ. Marit. Constanta 2010, 11, 216–218. [Google Scholar]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ.; Agarwal, P.; Jleli, M. Exponential trigonometric convex functions and Hermite-Hadamard type inequalities. Math. Slovaca 2021, 71, 43–56. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalitie for exponentially convex function. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- He, W.; Farid, G.; Mahreen, K.; Zahra, M.; Chen, N. On an integral and consequent fractional integral operators via generalized convexity. AIMS Math. 2020, 5, 7632–7648. [Google Scholar] [CrossRef]
- Rashid, S.; Ashraf, R.; Noor, M.A.; Noor, K.I.; Chu, Y.-M. New weighted generalizations for differentiable exponentially convex mapping with application. AIMS Math. 2020, 5, 3525–3546. [Google Scholar] [CrossRef]
- Qi, H.; Yussouf, M.; Mehmood, S.; Chu, Y.-M.; Farid, G. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Math. 2020, 5, 6030–6042. [Google Scholar] [CrossRef]
- Yıldız, Ç.; Bakan, E.; Dönmez, H. New general inequalities for exponential type convex function. Turk. J. Sci. 2023, 8, 11–18. [Google Scholar]
- Yıldız, Ç.; Yergöz, A. An investigation into inequalities obtained through the new lemma for exponential type convex functions. Filomat 2023, 37, 5149–5163. [Google Scholar]
- Zhou, S.S.; Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.M. New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Math. 2020, 5, 6874–6901. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Nasir, J.; Aydi, H.; Mukheimer, A. New Ostrowski-Type Fractional Integral Inequalities via Generalized Exponential-Type Convex Functions and Applications. Symmetry 2021, 13, 1429. [Google Scholar] [CrossRef]
- İşcan, İ. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 2019, 304. [Google Scholar] [CrossRef]
- Kadakal, M. Better results for Trigonometrically convex functions via Hölder-İşcan and Improved Power-Mean inequalities. Univ. J. Math. Appl. 2020, 3, 38–43. [Google Scholar] [CrossRef]
- Agarwal, P.; Kadakal, M.; İşcan, İ.; Chu, Y.-M. Better approaches for n-times differentiable convex functions. Mathematics 2020, 8, 950. [Google Scholar] [CrossRef]
- Özcan, S. Hermite–Hadamard type inequalities for m-convex and (α, m)-convex functions. J. Inequal. Appl. 2020, 2020, 175. [Google Scholar] [CrossRef]
- Özcan, S.; İşcan, İ. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef]
- Chen, S.-B.; Rashid, S.; Noor, M.A.; Hammouch, Z.; Chu, Y.-M. New fractional approaches for n-polynomial P-convexity with applications in special function theory. Adv. Diff. Equ. 2020, 2020, 543. [Google Scholar] [CrossRef]
- Lui, Z. A sharp generalized Ostrowski-Grüss Inequality. Tamsui Oxf. J. Math. Sci. 2008, 24, 175–184. [Google Scholar]
- Bayraktar, B.; Nápoles, V.J.E. New Generalized Integral Inequalities Via (h, m)-Convex Modified Functions. Izv. Inst. Mat. Inf. Udmurt. Gos. Univ. 2022, 60, 3–15. [Google Scholar] [CrossRef]
- Nápoles, V.J.E.; Bayraktar, B.; Butt, S. New integral inequalities of Hermite-Hadamard type in a generalized context. Punjab Univ. J. Math. 2021, 53, 765–777. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, Ç.; Valdés, J.E.N.; Cotîrlă, L.-I. A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality. Axioms 2023, 12, 931. https://doi.org/10.3390/axioms12100931
Yildiz Ç, Valdés JEN, Cotîrlă L-I. A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality. Axioms. 2023; 12(10):931. https://doi.org/10.3390/axioms12100931
Chicago/Turabian StyleYildiz, Çetin, Juan E. Nápoles Valdés, and Luminiţa-Ioana Cotîrlă. 2023. "A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality" Axioms 12, no. 10: 931. https://doi.org/10.3390/axioms12100931
APA StyleYildiz, Ç., Valdés, J. E. N., & Cotîrlă, L. -I. (2023). A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality. Axioms, 12(10), 931. https://doi.org/10.3390/axioms12100931