An Enhanced Slime Mould Algorithm Combines Multiple Strategies
Abstract
:1. Introduction
Motivation and Contribution
- To solve the aimless random search of slime mould individuals and to improve the global exploration capability of the algorithm, a novel approach involving population-averaged position and Lévy flight with conditional selection is proposed.
- To improve the leadership abilities of the best slime mould individual, a novel technique called dynamic lens mapping learning is proposed.
- A novel and improved crisscross method is proposed. This method effectively utilizes the valuable information in dimension of the population renewal process, eliminating the influence of local extremes and consequently enhancing the quality of each solution.
- A total of 40 benchmark functions from the CEC2017 and CEC2013 test suites were employed to evaluate the numerical performance, along with 2 real-world problems to assess the feasibility of optimization. A comparison of the test results between the EMSA and other participating algorithms clearly demonstrates that the EMSA exhibits significantly superior optimization performance.
2. Background
2.1. Slime Mould Algorithm (SMA)
2.1.1. Approach Food
2.1.2. Wrap Food
2.1.3. Grabble Food
2.2. Related Work
Algorithm 1 SMA |
1. Input: the parameters N, , the positions of slime mould ; |
2. |
3. while ( do |
4. Calculate the fitness of all slime mould; |
5. Update best fitness and best position ; |
6. Calculate the by Equation (4); |
7. for |
8. Update ; |
9. if |
10. Update positions by Equation (6); |
11 else if |
12. Update positions by Equation (7); |
13 else |
14. Update positions by Equation (8); |
15 end if |
16. end for |
17. ; |
18. end while |
19. output: ; |
3. Enhanced Slime Mould Algorithm That Combines Multiple Strategies (ESMA)
3.1. A New Global Search Mechanism
3.2. An Effective Learning Method
3.3. A Feasible Update Method
3.3.1. Horizontal Crossover
3.3.2. Vertical Crossover
3.4. Improved ESMA
Algorithm 2 ESMA |
1. Input: the parameters N, , the positions of slime mould ; |
2. |
3. while |
4. Calculate the fitness of all slime mould; |
5. Update best fitness and best position ; |
6. Calculate the by Equation (14); |
7. Calculate the , by Equations (10) and (11); |
8. for |
9. Update ; |
10. if |
11. Update positions by Equation (6); |
12. else if |
13. Update positions by Equation (15); |
14. else |
15. Update positions by Equation (8); |
16. end if |
17. end for |
18. for |
19. Calculate horizontal crossover positions by Equations (24) and (25); |
20. Calculate vertical crossover positions by Equation (26); |
21. end for |
22. Calculate Lens learning position by Equation (19); |
23. Update best position by Equation (21); |
24. ; |
25. end while |
26. output: ; |
3.5. Complexity Analysis
4. Experimental Results and Discussion
4.1. Experimental Criteria and Setup
4.2. CEC2017-Based Effectiveness Analysis
4.3. CEC2013-Based Effectiveness Analysis
4.4. Execution Time
4.5. Atatistical Test
4.6. ESMA Diversity Analysis
4.7. ESMA Exploration and Exploitation Analysis
4.8. Real-World Engineering Problems
4.8.1. Robot Path Planning Problem
4.8.2. Pressure Vessel Design Problem
5. Summary and Future
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Si, T.; Patra, D.K.; Mondal, S.; Mukherjee, P. Breast DCE-MRI segmentation for lesion detection using Chimp Optimization Algorithm. Expert Syst. Appl. 2022, 204, 117481. [Google Scholar] [CrossRef]
- Huiling, C.; Shan, J.; Mingjing, W.; Asghar, H.A.; Xuehua, Z. Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 2020, 244, 118788. [Google Scholar]
- Zhu, D.; Huang, Z.; Liao, S.; Zhou, C.; Yan, S.; Chen, G. Improved Bare Bones Particle Swarm Optimization for DNA Sequence Design. IEEE Trans. NanoBiosci. 2023, 22, 603–613. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Li, G.C. A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Neural Netw. Off. J. Int. Neural Netw. Soc. 2014, 55, 20–29. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Saha, A.K. A Hybrid Moth Flame Optimization Algorithm for Global Optimization. J. Bionic Eng. 2022, 19, 1522–1543. [Google Scholar] [CrossRef]
- Chen, X.; Tang, B.; Fan, J.; Guo, X. Online gradient descent algorithms for functional data learning. J. Complex. 2022, 70, 101635. [Google Scholar] [CrossRef]
- Neculai, A. A diagonal quasi-Newton updating method for unconstrained optimization. Numer. Algorithms 2019, 81, 575–590. [Google Scholar]
- Bellet, J.-B.; Croisille, J.-P. Least squares spherical harmonics approximation on the Cubed Sphere. J. Comput. Appl. Math. 2023, 429, 115213. [Google Scholar] [CrossRef]
- Bader, A.; Randa, A.; Hafez, E.H.; Riad Fathy, H. On the Mixture of Normal and Half-Normal Distributions. Math. Probl. Eng. 2022, 2022, 3755431. [Google Scholar]
- Natido, A.; Kozubowski, T.J. A uniform-Laplace mixture distribution. J. Comput. Appl. Math. 2023, 429, 115236. [Google Scholar] [CrossRef]
- Laith, A.; Ali, D.; Woo, G.Z. A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications. Appl. Sci. 2020, 10, 3827. [Google Scholar]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Cui, Z.H. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Seyedali, M.; Andrew, L. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Gaurav, D.; Vijay, K. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]
- Asghar, H.A.; Seyedali, M.; Hossam, F.; Ibrahim, A.; Majdi, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar]
- Baykasoglu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft Comput. 2015, 36, 152–164. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, S.; Zhou, C.; Yan, S. Manta ray foraging optimization based on mechanics game and progressive learning for multiple optimization problems. Appl. Soft Comput. 2023, 145, 110561. [Google Scholar] [CrossRef]
- Bhargava, G.; Yadav, N.K. Solving combined economic emission dispatch model via hybrid differential evaluation and crow search algorithm. Evol. Intell. 2022, 15, 1161–1169. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Asghar, H.A.; Seyedali, M. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Wu, Z.; Heidari, A.A.; Chen, H.; Alabdulkreem, E.; Escorcia-Gutierrez, J.; Wang, X. Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection. Neurocomputing 2023, 551, 126467. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S. An enhanced slime mould algorithm based on adaptive grouping technique for global optimization. Expert Syst. Appl. 2023, 222, 119877. [Google Scholar] [CrossRef]
- Kumar, N.M.; Pand; Rutuparna; Ajith, A. Adaptive opposition slime mould algorithm. Soft Comput. 2021, 25, 14297–14313. [Google Scholar]
- Deng, L.; Liu, S. A multi-strategy improved slime mould algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 2023, 404, 116200. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks—Conference Proceedings, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
- Seyedali, M.; Mohammad, M.S.; Andrew, L. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Alireza, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar]
- Hong, M.; Zhongrui, Q.; Chengbi, Z. Multi-Strategy Improved Slime Mould Algorithm and its Application in Optimal Operation of Cascade Reservoirs. Water Resour. Manag. 2022, 36, 3029–3048. [Google Scholar]
- Altay, O. Chaotic slime mould optimization algorithm for global optimization. Artif. Intell. Rev. 2022, 55, 3979–4040. [Google Scholar] [CrossRef]
- Tang, A.D.; Tang, S.Q.; Han, T.; Zhou, H.; Xie, L. A Modified Slime Mould Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 2298215. [Google Scholar] [CrossRef]
- Gao, Z.-M.; Zhao, J.; Li, S.-R. The Improved Slime Mould Algorithm with Cosine Controlling Parameters. J. Phys. Conf. Ser. 2020, 1631, 012083. [Google Scholar] [CrossRef]
- Hu, J.; Gui, W.; Asghar, H.A.; Cai, Z.; Liang, G.; Chen, H.; Pan, Z. Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection. Knowl.-Based Syst. 2022, 237, 107761. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC)algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E.; Song, D. Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites. ISA Trans. 2022, 121, 191–205. [Google Scholar] [CrossRef]
- Ren, L.; Heidari, A.A.; Cai, Z.; Shao, Q.; Liang, G.; Chen, H.L.; Pan, Z. Gaussian kernel probability-driven slime mould algorithm with new movement mechanism for multi-level image segmentation. Measurement. J. Int. Meas. Confed. 2022, 192, 110884. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Noori, R.M.; Togun, H. Multi-strategy Slime Mould Algorithm for hydropower multi-reservoir systems optimization. Knowl.-Based Syst. 2022, 250, 109048. [Google Scholar] [CrossRef]
- Pawani, K.; Singh, M. Combined Heat and Power Dispatch Problem Using Comprehensive Learning Wavelet-Mutated Slime Mould Algorithm. Electr. Power Compon. Syst. 2023, 51, 12–28. [Google Scholar] [CrossRef]
- Sun, K.; Jia, H.; Li, Y.; Jiang, Z. Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization. J. Intell. Fuzzy Syst. 2020, 40, 1667–1679. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. A hybrid teaching–learning slime mould algorithm for global optimization and reliability-based design optimization problems. Neural Comput. Appl. 2022, 34, 16617–16642. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, D.; Yu, F.; Heidari, A.A.; Ru, J.; Chen, H.; Mafarja, M.; Turabieh, H.; Pan, Z. Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Comput. Biol. Med. 2021, 138, 104910. [Google Scholar] [CrossRef]
- Izci, D.; Ekinci, S.; Zeynelgil, H.L.; Hedley, J. Fractional Order PID Design based on Novel Improved Slime Mould Algorithm. Electr. Power Compon. Syst. 2022, 49, 901–918. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Nafi, Ö.B.; Berkan, A.S.; Timur, D.; Bilal, Ö. A novel version of slime mould algorithm for global optimization and real world engineering problems Enhanced slime mould algorithm. Math. Comput. Simul. 2022, 198, 253–288. [Google Scholar]
- Mirjalili, S. SCA: A Sine Cosine algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Yin, S.; Luo, Q.; Zhou, Y. EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems. Arab. J. Sci. Eng. 2022, 47, 10115–10146. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephen, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Tang, H.; Fang, B.; Liu, R. A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem. Appl. Soft Comput. 2022, 120, 108694. [Google Scholar] [CrossRef]
- Joshi, S.K. Levy flight incorporated hybrid learning model for gravitational search algorithm. Knowl.-Based Syst. 2023, 265, 110374. [Google Scholar] [CrossRef]
- Ewees Ahmed, A.; Mostafa Reham, R.; Ghoniem Rania, M.; Gaheen Marwa, A. Improved seagull optimization algorithm using Lévy flight and mutation operator for feature selection. Neural Comput. Appl. 2022, 34, 7437–7472. [Google Scholar] [CrossRef]
- Park, S.-Y.; Lee, J.-J. Stochastic opposition-based learning using a beta distribution in differential evolution. IEEE Trans. Cybern. 2016, 46, 2184–2194. [Google Scholar] [CrossRef]
- Yu, X.; Xu Wang, Y.; Li, C.-L. Opposition-based learning grey wolf optimizer for global optimization. Knowl.-Based Syst. 2021, 226, 107139. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Xu, M. Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection. Expert Syst. Appl. 2022, 202, 117255. [Google Scholar] [CrossRef]
- Han, M.; Du, Z.; Zhu, H.; Li, Y.; Yuan, Q.; Zhu, H. Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization. Expert Syst. Appl. 2022, 210, 118460. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, H. A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimed. Tools Appl. 2021, 80, 3863–3884. [Google Scholar] [CrossRef]
- Meng, A.B.; Chen, Y.C.; Yin, H.; Chen, S.Z. Crisscross optimization algorithm and its application. Knowl.-Based Syst. 2014, 67, 218–229. [Google Scholar] [CrossRef]
- Mohamed, A.; Mohamed, A. Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cybern. 2019, 10, 253–277. [Google Scholar] [CrossRef]
- Kashif, H.; Mohd, S.M.N.; Cheng, S.; Shi, Y. On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 2019, 31, 7665–7683. [Google Scholar]
- Hao, K.; Zhao, J.; Li, Z.; Liu, Y.; Zhao, L. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm. Ocean Eng. 2022, 263, 112421. [Google Scholar] [CrossRef]
- Song, B.; Miao, H.; Xu, L. Path planning for coal mine robot via improved ant colony optimization algorithm. Syst. Sci. Control Eng. 2021, 9, 283–289. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Ma, C.; Huang, H.; Fan, Q. Grey wolf optimizer based on Aquila exploration method. Expert Syst. Appl. 2022, 205, 117629. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
Algorithms/Literature | Improved Ways | Practical Application |
---|---|---|
MSMA/[33] | Nonlinear parameter , and tent map improvement for elite individuals. | Generation of electricity from a system of terraced reservoirs. |
CSMA/[34] | Improvements to the weight are made using 10 different chaotic mappings. | Three engineering problems, including tension–compression spring design. |
MSMA/[35] | Two adaptive parameters, the initial population is improved using chaotic opposites and spiral strategy. | Welded beam design and tension–compression spring problems. |
ISMA/[36] | Cosine instead of arctanh function to improve the parameter . | |
DFSMA/[37] | Dispersed foraging strategy. | Feature selection tasks. |
CO-SMA/[39] | Logistic map for population perturbation and opposite learning to improve elite individuals. | High altitude wind turbines. |
MGSMA/[40] | MVO strategy for foraging process and Gaussian kernel probability strategy to perturb the current individual. | Multi-threshold image segmentation. |
MSMA/[41] | Based on the DE mutation operator, adjustable parameters are used to perturb the current solution. | Generating power of hydroelectric multi-reservoir systems. |
WMSMA/[42] | Wavelet mutations perturb current individuals. | Cogeneration scheduling issues. |
BTSMA/[43] | Brownian motion and tournament selection mechanisms for improved global exploration and adaptive hill climbing strategy for localized exploitation. | Structural engineering design, multilayer perceptron. |
TLSMA/[44] | Hybrid TLBO algorithm. Divided into two subpopulations, the first subpopulation uses TLBO search, and the second subpopulation uses SMA search. | Five RBRO problems including numerical design optimization. |
MDE/[45] | Mixing with the DE algorithm, the mutation and crossover stages have been undergone. | Multi-threshold segmentation of breast cancer images. |
OBL-SMA-SA/[46] | SA is used to guide global exploration, while adversarial learning is employed to improve local exploitation. | Adjusting FOPID controller parameters. |
SCSMA/[48] | The update mechanism for exploration and exploitation in SMA has been improved using sine and cosine functions. | Four real-world problems, including the design of a cantilever beam. |
EOSMA/[50] | The exploration and exploitation formulas have been adjusted to update the positions of the best individual and random individuals. The EO update replaces the simple random search stage in SMA and applies differential mutation to the current individual. | Nine issues, including vehicle side impact design. |
Algorithm | Parameters |
---|---|
AGSMA/AOSMA/SMA | |
MSMA | |
AGWO | |
DE | |
PSO | |
CSA | |
HHO | |
SSA | |
GWO | |
AOA | |
ALO | |
WOA |
Functions | Optimal | Range |
---|---|---|
CEC2017 Unimodal Functions | ||
: Shifted and Rotated Bent Cigar Function | 100 | [−100, 100] |
: Shifted and Rotated Zakharov Function | 300 | [−100, 100] |
CEC2017 Simple Multimodal Functions | ||
: Shifted and Rotated Rosenbrock’s Function | 400 | [−100, 100] |
: Shifted and Rotated Rastrigin’s Function | 500 | [−100, 100] |
: Shifted and Rotated Expanded Scaffer’s F6 Function | 600 | [−100, 100] |
: Shifted and Rotated Lunacek Bi-Rastrigin Function | 700 | [−100, 100] |
: Shifted and Rotated Non-Continuous Rastrigin’s Function | 800 | [−100, 100] |
: Shifted and Rotated Levy Function | 900 | [−100, 100] |
: Shifted and Rotated Schwefel’s Function | 1000 | [−100, 100] |
CEC2017 Hybrid Functions | ||
: Hybrid Function 1 (N = 3) | 1100 | [−100, 100] |
: Hybrid Function 2 (N = 3) | 1200 | [−100, 100] |
: Hybrid Function 3 (N = 3) | 1300 | [−100, 100] |
: Hybrid Function 4 (N = 4) | 1400 | [−100, 100] |
: Hybrid Function 5 (N = 4) | 1500 | [−100, 100] |
: Hybrid Function 6 (N = 4) | 1600 | [−100, 100] |
: Hybrid Function 6 (N = 5) | 1700 | [−100, 100] |
: Hybrid Function 6 (N = 5) | 1800 | [−100, 100] |
: Hybrid Function 6 (N = 5) | 1900 | [−100, 100] |
: Hybrid Function 6 (N = 6) | 2000 | [−100, 100] |
CEC2017 Composition Functions | ||
: Composition Function 1 (N = 3) | 2100 | [−100, 100] |
: Composition Function 2 (N = 3) | 2200 | [−100, 100] |
: Composition Function 3 (N = 4) | 2300 | [−100, 100] |
: Composition Function 4 (N = 4) | 2400 | [−100, 100] |
: Composition Function 5 (N = 5) | 2500 | [−100, 100] |
: Composition Function 6 (N = 5) | 2600 | [−100, 100] |
: Composition Function 7 (N = 6) | 2700 | [−100, 100] |
: Composition Function 8 (N = 6) | 2800 | [−100, 100] |
: Composition Function 9 (N = 3) | 2900 | [−100, 100] |
: Composition Function 10 (N = 3) | 3000 | [−100, 100] |
CEC2013 Unimodal Functions | ||
: Rotated Discus Function 4 | −1100 | [−100, 100] |
: Different Powers Function 5 | −1000 | [−100, 100] |
CEC2013 Basic Mutilmodal Functions | ||
: Rotated Rosenbrock’s Function | −900 | [−100, 100] |
: Rotated Griewank’s Function | −500 | [−100, 100] |
: Rastrigin’s Function | −400 | [−100, 100] |
: Non-Continuous Rastrigin’s Function | −200 | [−100, 100] |
: Schwefel’s Function | −100 | [−100, 100] |
: Lunacek Bi-Rastrigin Function | 300 | [−100, 100] |
: Expanded Griewank’s plus Rosenbrock’s Function | 500 | [−100, 100] |
CEC2013 Composition Functions | ||
: Composition Function 2 (N = 3 Unrotated) | 800 | [−100, 100] |
: Composition Function 4 (N = 3 Rotated) | 1000 | [−100, 100] |
F | Result | AGSMA | AOSMA | MSMA | DE | GWO | HHO | PSO | CSA | SSA | SMA | ESMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 5.38 × 104 | 2.33 × 108 | 4.05 × 108 | 2.31 × 109 | 2.77 × 109 | 2.95 × 107 | 8.97 × 109 | 3.31 × 107 | 2.43 × 1010 | 1.31 × 104 | 8.80 × 103 |
Best | 6.20 × 102 | 1.78 × 103 | 6.34 × 107 | 4.26 × 106 | 4.88 × 108 | 2.13 × 107 | 3.01 × 109 | 7.82 × 106 | 1.48 × 1010 | 2.76 × 103 | 2.70 × 102 | |
Std | 2.43 × 105 | 3.78 × 108 | 7.66 × 108 | 5.45 × 109 | 2.65 × 109 | 9.79 × 106 | 4.68 × 109 | 2.00 × 107 | 6.24 × 109 | 7.85 × 103 | 7.76 × 103 | |
rank | 3 | 6 | 7 | 8 | 9 | 5 | 10 | 4 | 11 | 2 | 1 | |
F2 | Mean | 1.89 × 104 | 2.96 × 104 | 3.21 × 104 | 2.37 × 105 | 5.00 × 104 | 3.71 × 104 | 1.85 × 105 | 3.43 × 104 | 7.28 × 104 | 6.19 × 103 | 7.35 × 102 |
Best | 4.50 × 103 | 8.04 × 103 | 2.10 × 104 | 1.23 × 105 | 4.04 × 104 | 2.63 × 104 | 6.56 × 104 | 1.97 × 104 | 4.34 × 104 | 1.20 × 103 | 3.16 × 102 | |
Std | 6.22 × 103 | 1.13 × 104 | 5.87 × 103 | 8.07 × 104 | 9.77 × 103 | 6.24 × 103 | 9.48 × 104 | 8.56 × 103 | 2.17 × 104 | 4.13 × 103 | 8.85 × 102 | |
rank | 3 | 4 | 5 | 11 | 8 | 7 | 10 | 6 | 9 | 2 | 1 | |
F3 | Mean | 5.13 × 102 | 5.08 × 102 | 5.45 × 102 | 6.98 × 102 | 6.11 × 102 | 5.54 × 102 | 1.67 × 103 | 6.08 × 102 | 3.30 × 103 | 5.15 × 102 | 4.99 × 102 |
Best | 4.94 × 102 | 4.76 × 102 | 4.87 × 102 | 4.68 × 102 | 5.30 × 102 | 5.00 × 102 | 8.42 × 102 | 5.28 × 102 | 1.69 × 103 | 4.70 × 102 | 4.64 × 102 | |
Std | 2.26 × 101 | 1.83 × 101 | 3.22 × 101 | 3.88 × 102 | 8.54 × 101 | 3.78 × 101 | 1.54 × 103 | 5.17 × 101 | 9.47 × 102 | 2.07 × 101 | 2.34 × 101 | |
rank | 3 | 2 | 5 | 9 | 8 | 6 | 10 | 7 | 11 | 4 | 1 | |
F4 | Mean | 6.09 × 102 | 5.87 × 102 | 6.28 × 102 | 6.86 × 102 | 6.20 × 102 | 7.57 × 102 | 7.91 × 102 | 7.06 × 102 | 8.35 × 102 | 6.19 × 102 | 6.13 × 102 |
Best | 5.74 × 102 | 5.42 × 102 | 5.91 × 102 | 6.01 × 102 | 5.74 × 102 | 6.97 × 102 | 7.38 × 102 | 6.55 × 102 | 7.64 × 102 | 5.63 × 102 | 5.59 × 102 | |
Std | 3.21 × 101 | 1.74 × 101 | 2.35 × 101 | 5.85 × 101 | 2.72 × 101 | 3.53 × 101 | 2.19 × 101 | 3.54 × 101 | 2.95 × 101 | 2.74 × 101 | 2.95 × 101 | |
rank | 2 | 1 | 6 | 7 | 5 | 9 | 10 | 8 | 11 | 4 | 3 | |
F5 | Mean | 6.13 × 102 | 6.12 × 102 | 6.15 × 102 | 6.35 × 102 | 6.11 × 102 | 6.65 × 102 | 6.56 × 102 | 6.55 × 102 | 6.67 × 102 | 6.11 × 102 | 6.09 × 102 |
Best | 6.08 × 102 | 6.04 × 102 | 6.09 × 102 | 6.18 × 102 | 6.05 × 102 | 6.51 × 102 | 6.32 × 102 | 6.38 × 102 | 6.53 × 102 | 6.03 × 102 | 6.03 × 102 | |
Std | 4.79 × 100 | 5.16 × 100 | 4.14 × 100 | 1.60 × 101 | 3.83 × 100 | 5.52 × 100 | 1.69 × 101 | 7.90 × 100 | 1.31 × 101 | 8.29 × 100 | 4.15 × 100 | |
rank | 5 | 4 | 6 | 7 | 2 | 10 | 9 | 8 | 11 | 3 | 1 | |
F6 | Mean | 8.57 × 102 | 8.54 × 102 | 9.14 × 102 | 1.22 × 103 | 9.00 × 102 | 1.30 × 103 | 1.19 × 103 | 1.07 × 103 | 1.49 × 103 | 8.66 × 102 | 8.57 × 102 |
Best | 8.14 × 102 | 8.21 × 102 | 8.55 × 102 | 1.00 × 103 | 8.26 × 102 | 1.12 × 103 | 1.08 × 103 | 9.29 × 102 | 1.33 × 103 | 7.99 × 102 | 8.17 × 102 | |
Std | 3.11 × 101 | 3.06 × 101 | 2.59 × 101 | 1.57 × 102 | 6.19 × 101 | 5.63 × 101 | 4.99 × 101 | 9.95 × 101 | 1.29 × 102 | 3.22 × 101 | 2.85 × 101 | |
rank | 2 | 3 | 6 | 9 | 5 | 10 | 8 | 7 | 11 | 4 | 1 | |
F7 | Mean | 9.12 × 102 | 8.79 × 102 | 9.14 × 102 | 1.00 × 103 | 8.89 × 102 | 9.80 × 102 | 1.09 × 103 | 9.41 × 102 | 1.11 × 103 | 9.26 × 102 | 8.99 × 102 |
Best | 8.66 × 102 | 8.38 × 102 | 8.81 × 102 | 8.95 × 102 | 8.60 × 102 | 9.11 × 102 | 1.05 × 103 | 9.26 × 102 | 1.06 × 103 | 8.57 × 102 | 8.65 × 102 | |
Std | 2.94 × 101 | 1.94 × 101 | 2.20 × 101 | 5.98 × 101 | 2.07 × 101 | 2.40 × 101 | 4.01 × 101 | 2.36 × 101 | 2.89 × 101 | 2.55 × 101 | 2.69 × 101 | |
rank | 4 | 1 | 5 | 9 | 2 | 8 | 10 | 7 | 11 | 6 | 3 | |
F8 | Mean | 2.70 × 103 | 2.48 × 103 | 2.55 × 103 | 7.02 × 103 | 2.47 × 103 | 8.41 × 103 | 7.00 × 103 | 4.39 × 103 | 8.58 × 103 | 3.86 × 103 | 2.40 × 103 |
Best | 1.14 × 103 | 1.11 × 103 | 1.35 × 103 | 3.06 × 103 | 1.16 × 103 | 6.05 × 103 | 3.12 × 103 | 2.53 × 103 | 5.52 × 103 | 1.73 × 103 | 1.17 × 103 | |
Std | 1.02 × 103 | 4.46 × 102 | 1.17 × 103 | 3.84 × 103 | 7.95 × 102 | 6.50 × 102 | 3.03 × 103 | 7.84 × 102 | 2.60 × 103 | 1.50 × 103 | 8.50 × 102 | |
rank | 5 | 3 | 4 | 9 | 2 | 10 | 8 | 7 | 11 | 6 | 1 | |
F9 | Mean | 4.56 × 103 | 4.80 × 103 | 8.58 × 103 | 7.68 × 103 | 5.01 × 103 | 6.03 × 103 | 8.06 × 103 | 5.16 × 103 | 8.77 × 103 | 4.75 × 103 | 4.36 × 103 |
Best | 3.39 × 103 | 3.50 × 103 | 7.42 × 103 | 5.13 × 103 | 3.01 × 103 | 4.55 × 103 | 6.53 × 103 | 3.47 × 103 | 8.10 × 103 | 3.66 × 103 | 3.62 × 103 | |
Std | 6.10 × 102 | 8.86 × 102 | 3.83 × 102 | 1.42 × 103 | 1.55 × 103 | 6.34 × 102 | 5.65 × 102 | 7.31 × 102 | 2.75 × 102 | 6.66 × 102 | 5.79 × 102 | |
rank | 2 | 4 | 10 | 8 | 5 | 7 | 9 | 6 | 11 | 3 | 1 | |
F10 | Me0an | 1.26 × 103 | 1.28 × 103 | 1.28 × 103 | 6.16 × 103 | 2.24 × 103 | 1.31 × 103 | 5.92 × 103 | 1.44 × 103 | 3.86 × 103 | 1.27 × 103 | 1.25 × 103 |
Best | 1.15 × 103 | 1.14 × 103 | 1.19 × 103 | 1.28 × 103 | 1.33 × 103 | 1.25 × 103 | 1.84 × 103 | 1.27 × 103 | 2.35 × 103 | 1.18 × 103 | 1.18 × 103 | |
Std | 3.53 × 101 | 4.66 × 101 | 3.66 × 101 | 6.46 × 103 | 1.01 × 103 | 6.47 × 101 | 5.87 × 103 | 8.07 × 101 | 9.22 × 102 | 5.38 × 101 | 5.33 × 101 | |
rank | 2 | 5 | 4 | 11 | 8 | 6 | 10 | 7 | 9 | 3 | 1 | |
F11 | Mean | 2.22 × 106 | 3.39 × 106 | 1.48 × 107 | 8.07 × 107 | 9.37 × 107 | 4.23 × 107 | 1.37 × 109 | 8.35 × 107 | 2.17 × 109 | 3.74 × 106 | 2.19 × 106 |
Best | 1.17 × 105 | 3.20 × 105 | 3.97 × 106 | 2.78 × 105 | 1.26 × 107 | 7.21 × 106 | 3.26 × 108 | 3.71 × 106 | 1.28 × 109 | 1.17 × 105 | 9.43 × 104 | |
Std | 1.58 × 106 | 2.52 × 106 | 1.06 × 107 | 2.01 × 108 | 9.10 × 107 | 3.77 × 107 | 1.08 × 109 | 7.16 × 107 | 6.51 × 108 | 2.47 × 106 | 1.23 × 106 | |
rank | 2 | 3 | 5 | 7 | 9 | 6 | 10 | 8 | 11 | 4 | 1 | |
F12 | Mean | 2.25 × 104 | 3.83 × 104 | 5.80 × 106 | 3.51 × 108 | 2.26 × 107 | 2.01 × 106 | 1.27 × 109 | 7.08 × 104 | 7.64 × 108 | 4.57 × 104 | 2.21 × 104 |
Best | 1.70 × 103 | 1.02 × 104 | 6.47 × 104 | 1.65 × 104 | 3.48 × 104 | 2.23 × 105 | 3.80 × 107 | 1.88 × 104 | 2.46 × 108 | 1.29 × 104 | 3.08 × 103 | |
Std | 2.14 × 104 | 2.59 × 104 | 2.52 × 107 | 9.09 × 108 | 4.37 × 107 | 6.63 × 106 | 1.72 × 109 | 4.15 × 104 | 3.97 × 108 | 2.67 × 104 | 1.93 × 104 | |
rank | 2 | 3 | 7 | 9 | 8 | 6 | 11 | 5 | 10 | 4 | 1 | |
F13 | Mean | 5.27 × 104 | 1.07 × 105 | 8.22 × 104 | 1.89 × 106 | 6.38 × 105 | 8.95 × 105 | 2.17 × 106 | 9.41 × 104 | 5.25 × 105 | 1.02 × 105 | 6.84 × 104 |
Best | 1.65 × 103 | 1.76 × 104 | 9.89 × 103 | 2.09 × 103 | 2.04 × 103 | 4.41 × 104 | 5.52 × 104 | 3.10 × 103 | 4.59 × 104 | 1.17 × 104 | 6.83 × 103 | |
Std | 5.16 × 104 | 9.02 × 104 | 7.15 × 104 | 5.46 × 106 | 1.01 × 106 | 7.11 × 105 | 4.32 × 106 | 1.19 × 105 | 4.23 × 105 | 8.32 × 104 | 4.33 × 104 | |
rank | 1 | 6 | 3 | 10 | 8 | 9 | 11 | 4 | 7 | 5 | 2 | |
F14 | Mean | 3.32 × 104 | 3.23 × 104 | 3.75 × 104 | 3.23 × 106 | 2.21 × 106 | 8.91 × 104 | 3.51 × 107 | 2.38 × 104 | 1.33 × 108 | 3.70 × 104 | 2.21 × 104 |
Best | 1.58 × 103 | 5.02 × 103 | 8.89 × 103 | 2.41 × 103 | 1.51 × 104 | 2.51 × 104 | 2.93 × 106 | 8.69 × 103 | 4.96 × 107 | 2.24 × 103 | 1.84 × 103 | |
Std | 8.70 × 103 | 1.52 × 104 | 3.40 × 104 | 1.69 × 107 | 6.79 × 106 | 6.31 × 104 | 2.82 × 107 | 9.45 × 103 | 8.95 × 107 | 1.47 × 104 | 1.53 × 104 | |
rank | 4 | 3 | 6 | 9 | 8 | 7 | 10 | 2 | 11 | 5 | 1 | |
F15 | Mean | 2.46 × 103 | 2.51 × 103 | 2.58 × 103 | 3.39 × 103 | 2.54 × 103 | 3.49 × 103 | 4.11 × 103 | 3.52 × 103 | 3.97 × 103 | 2.66 × 103 | 2.46 × 103 |
Best | 1.91 × 103 | 1.86 × 103 | 2.06 × 103 | 2.82 × 103 | 2.09 × 103 | 2.33 × 103 | 3.37 × 103 | 2.75 × 103 | 3.51 × 103 | 1.97 × 103 | 1.76 × 103 | |
Std | 3.19 × 102 | 2.50 × 102 | 3.45 × 102 | 5.98 × 102 | 3.49 × 102 | 3.85 × 102 | 6.59 × 102 | 4.22 × 102 | 3.21 × 102 | 3.15 × 102 | 3.13 × 102 | |
rank | 2 | 3 | 6 | 8 | 5 | 9 | 11 | 4 | 10 | 7 | 1 | |
F16 | Mean | 2.17 × 103 | 2.18 × 103 | 2.21 × 103 | 2.66 × 103 | 2.03 × 103 | 2.64 × 103 | 2.96 × 103 | 2.52 × 103 | 2.70 × 103 | 2.25 × 103 | 2.19 × 103 |
Best | 1.80 × 103 | 1.84 × 103 | 1.92 × 103 | 1.91 × 103 | 1.81 × 103 | 2.09 × 103 | 2.16 × 103 | 2.21 × 103 | 2.55 × 103 | 1.95 × 103 | 1.85 × 103 | |
Std | 1.87 × 102 | 1.88 × 102 | 2.03 × 102 | 2.93 × 102 | 1.52 × 102 | 2.76 × 102 | 4.64 × 102 | 2.52 × 102 | 2.05 × 102 | 2.02 × 102 | 2.18 × 102 | |
rank | 2 | 3 | 5 | 9 | 1 | 8 | 11 | 7 | 10 | 6 | 4 | |
F17 | Mean | 1.02 × 106 | 1.12 × 106 | 7.87 × 105 | 1.27 × 107 | 1.04 × 106 | 3.57 × 106 | 2.43 × 107 | 1.00 × 106 | 9.46 × 106 | 1.64 × 106 | 6.21 × 105 |
Best | 8.12 × 104 | 1.55 × 105 | 3.77 × 104 | 8.96 × 104 | 9.59 × 104 | 1.34 × 105 | 1.65 × 106 | 6.19 × 104 | 1.31 × 106 | 3.13 × 105 | 6.18 × 104 | |
Std | 6.55 × 105 | 1.40 × 106 | 7.73 × 105 | 2.50 × 107 | 1.17 × 106 | 4.76 × 106 | 8.33 × 107 | 1.01 × 106 | 4.67 × 106 | 1.87 × 106 | 3.88 × 105 | |
rank | 4 | 6 | 2 | 10 | 5 | 8 | 11 | 3 | 9 | 7 | 1 | |
F18 | Mean | 1.28 × 104 | 3.16 × 104 | 4.99 × 104 | 1.03 × 107 | 2.88 × 106 | 8.34 × 105 | 1.08 × 108 | 2.61 × 106 | 2.21 × 108 | 2.57 × 104 | 1.20 × 104 |
Best | 1.97 × 103 | 2.19 × 103 | 3.52 × 103 | 2.07 × 103 | 4.37 × 104 | 7.27 × 104 | 1.44 × 107 | 1.53 × 105 | 6.42 × 107 | 2.15 × 103 | 2.06 × 103 | |
Std | 1.22 × 104 | 2.80 × 104 | 6.17 × 104 | 2.62 × 107 | 6.94 × 106 | 4.04 × 105 | 1.55 × 108 | 2.01 × 106 | 1.02 × 108 | 2.09 × 104 | 1.33 × 104 | |
rank | 2 | 4 | 5 | 9 | 8 | 6 | 10 | 7 | 11 | 3 | 1 | |
F19 | Mean | 2.44 × 103 | 2.51 × 103 | 2.63 × 103 | 3.10 × 103 | 2.44 × 103 | 2.81 × 103 | 2.89 × 103 | 2.58 × 103 | 2.95 × 103 | 2.59 × 103 | 2.51 × 103 |
Best | 2.16 × 103 | 2.21 × 103 | 2.19 × 103 | 2.42 × 103 | 2.22 × 103 | 2.40 × 103 | 2.57 × 103 | 2.33 × 103 | 2.62 × 103 | 2.12 × 103 | 2.10 × 103 | |
Std | 1.66 × 102 | 1.99 × 102 | 1.70 × 102 | 3.19 × 102 | 1.95 × 102 | 2.12 × 102 | 2.22 × 102 | 1.68 × 102 | 1.35 × 102 | 1.88 × 102 | 1.95 × 102 | |
rank | 1 | 4 | 7 | 11 | 2 | 8 | 9 | 5 | 10 | 6 | 3 | |
F20 | Mean | 2.41 × 103 | 2.38 × 103 | 2.41 × 103 | 2.51 × 103 | 2.41 × 103 | 2.59 × 103 | 2.62 × 103 | 2.50 × 103 | 2.60 × 103 | 2.41 × 103 | 2.40 × 103 |
Best | 2.37 × 103 | 2.35 × 103 | 2.37 × 103 | 2.40 × 103 | 2.36 × 103 | 2.46 × 103 | 2.56 × 103 | 2.44 × 103 | 2.56 × 103 | 2.38 × 103 | 2.35 × 103 | |
Std | 2.61 × 101 | 2.24 × 101 | 1.78 × 101 | 6.95 × 101 | 3.85 × 101 | 6.76 × 101 | 4.73 × 101 | 3.04 × 101 | 2.55 × 101 | 2.63 × 101 | 2.72 × 101 | |
rank | 4 | 1 | 3 | 8 | 6 | 9 | 11 | 7 | 10 | 5 | 2 | |
F21 | Mean | 2.32 × 103 | 5.10 × 103 | 2.96 × 103 | 8.89 × 103 | 4.87 × 103 | 7.44 × 103 | 8.14 × 103 | 2.98 × 103 | 8.25 × 103 | 5.97 × 103 | 5.19 × 103 |
Best | 2.32 × 103 | 2.34 × 103 | 2.47 × 103 | 2.87 × 103 | 2.62 × 103 | 2.33 × 103 | 3.63 × 103 | 2.32 × 103 | 4.26 × 103 | 2.32 × 103 | 2.30 × 103 | |
Std | 6.21 × 100 | 1.73 × 103 | 6.61 × 102 | 1.69 × 103 | 1.98 × 103 | 9.24 × 102 | 2.39 × 103 | 1.41 × 103 | 2.57 × 103 | 1.24 × 103 | 1.49 × 103 | |
rank | 1 | 5 | 2 | 11 | 4 | 8 | 9 | 3 | 10 | 7 | 6 | |
F22 | Mean | 2.76 × 103 | 2.76 × 103 | 2.77 × 103 | 2.87 × 103 | 2.78 × 103 | 3.25 × 103 | 3.38 × 103 | 3.20 × 103 | 3.02 × 103 | 2.76 × 103 | 2.75 × 103 |
Best | 2.71 × 103 | 2.71 × 103 | 2.73 × 103 | 2.71 × 103 | 2.73 × 103 | 2.86 × 103 | 3.07 × 103 | 2.96 × 103 | 2.93 × 103 | 2.72 × 103 | 2.71 × 103 | |
Std | 2.69 × 101 | 2.04 × 101 | 2.49 × 101 | 6.53 × 101 | 4.72 × 101 | 1.46 × 102 | 1.54 × 102 | 1.01 × 102 | 3.85 × 101 | 2.41 × 101 | 2.49 × 101 | |
rank | 4 | 2 | 5 | 7 | 6 | 10 | 11 | 9 | 8 | 3 | 1 | |
F23 | Mean | 2.91 × 103 | 2.91 × 103 | 2.97 × 103 | 3.02 × 103 | 2.94 × 103 | 3.50 × 103 | 3.61 × 103 | 3.27 × 103 | 3.16 × 103 | 2.94 × 103 | 2.92 × 103 |
Best | 2.87 × 103 | 2.87 × 103 | 2.92 × 103 | 2.91 × 103 | 2.88 × 103 | 3.23 × 103 | 3.43 × 103 | 3.07 × 103 | 3.11 × 103 | 2.88 × 103 | 2.87 × 103 | |
Std | 2.17 × 101 | 2.00 × 101 | 2.49 × 101 | 6.72 × 101 | 5.05 × 101 | 1.27 × 102 | 1.64 × 102 | 1.64 × 102 | 3.87 × 101 | 3.13 × 101 | 3.39 × 101 | |
rank | 2 | 1 | 6 | 7 | 5 | 10 | 11 | 9 | 8 | 4 | 3 | |
F24 | Mean | 2.89 × 103 | 2.93 × 103 | 2.93 × 103 | 3.02 × 103 | 3.00 × 103 | 2.94 × 103 | 3.42 × 103 | 2.98 × 103 | 4.29 × 103 | 2.94 × 103 | 2.92 × 103 |
Best | 2.89 × 103 | 2.89 × 103 | 2.91 × 103 | 2.89 × 103 | 2.96 × 103 | 2.91 × 103 | 3.12 × 103 | 2.95 × 103 | 3.90 × 103 | 2.90 × 103 | 2.88 × 103 | |
Std | 1.87 × 101 | 2.35 × 101 | 1.58 × 101 | 1.33 × 102 | 5.62 × 101 | 2.12 × 101 | 1.84 × 102 | 3.19 × 101 | 4.33 × 102 | 1.55 × 101 | 1.30 × 101 | |
rank | 1 | 4 | 3 | 9 | 8 | 6 | 10 | 7 | 11 | 5 | 2 | |
F25 | Mean | 4.57 × 103 | 4.66 × 103 | 4.84 × 103 | 6.07 × 103 | 4.85 × 103 | 7.70 × 103 | 7.23 × 103 | 6.42 × 103 | 7.68 × 103 | 4.94 × 103 | 4.51 × 103 |
Best | 3.91 × 103 | 4.13 × 103 | 4.38 × 103 | 4.89 × 103 | 4.14 × 103 | 3.00 × 103 | 4.21 × 103 | 2.91 × 103 | 5.46 × 103 | 4.24 × 103 | 3.97 × 103 | |
Std | 4.33 × 102 | 2.21 × 102 | 3.03 × 102 | 9.51 × 102 | 4.70 × 102 | 1.71 × 103 | 2.37 × 103 | 2.14 × 103 | 8.52 × 102 | 3.53 × 102 | 4.53 × 102 | |
rank | 2 | 3 | 4 | 7 | 5 | 11 | 10 | 8 | 9 | 6 | 1 | |
F26 | Mean | 3.23 × 103 | 3.23 × 103 | 3.24 × 103 | 3.28 × 103 | 3.26 × 103 | 3.51 × 103 | 3.78 × 103 | 3.71 × 103 | 3.48 × 103 | 3.24 × 103 | 3.23 × 103 |
Best | 3.21 × 103 | 3.21 × 103 | 3.22 × 103 | 3.22 × 103 | 3.22 × 103 | 3.35 × 103 | 3.37 × 103 | 3.44 × 103 | 3.38 × 103 | 3.22 × 103 | 3.20 × 103 | |
Std | 1.84 × 101 | 1.75 × 101 | 1.34 × 101 | 6.51 × 101 | 2.60 × 101 | 1.58 × 102 | 3.65 × 102 | 1.74 × 102 | 6.36 × 101 | 1.17 × 101 | 1.68 × 101 | |
rank | 3 | 2 | 5 | 7 | 6 | 9 | 11 | 10 | 8 | 4 | 1 | |
F27 | Mean | 3.31 × 103 | 3.35 × 103 | 3.33 × 103 | 3.75 × 103 | 3.47 × 103 | 3.34 × 103 | 4.06 × 103 | 3.38 × 103 | 4.85 × 103 | 3.29 × 103 | 3.25 × 103 |
Best | 3.22 × 103 | 3.27 × 103 | 3.28 × 103 | 3.21 × 103 | 3.33 × 103 | 3.28 × 103 | 3.44 × 103 | 3.29 × 103 | 3.91 × 103 | 3.21 × 103 | 3.20 × 103 | |
Std | 6.01 × 101 | 2.36 × 102 | 3.56 × 101 | 6.30 × 102 | 1.03 × 102 | 3.02 × 101 | 6.70 × 102 | 4.98 × 101 | 4.56 × 102 | 4.10 × 101 | 2.73 × 101 | |
rank | 3 | 6 | 4 | 9 | 8 | 5 | 10 | 7 | 11 | 2 | 1 | |
F28 | Mean | 3.86 × 103 | 3.97 × 103 | 3.95 × 103 | 4.45 × 103 | 3.88 × 103 | 4.85 × 103 | 5.13 × 103 | 4.76 × 103 | 5.12 × 103 | 3.89 × 103 | 3.84 × 103 |
Best | 3.37 × 103 | 3.54 × 103 | 3.55 × 103 | 3.84 × 103 | 3.57 × 103 | 4.34 × 103 | 4.13 × 103 | 4.10 × 103 | 4.60 × 103 | 3.62 × 103 | 3.44 × 103 | |
Std | 2.11 × 102 | 2.15 × 102 | 2.26 × 102 | 4.82 × 102 | 2.12 × 102 | 4.58 × 102 | 7.23 × 102 | 4.13 × 102 | 3.61 × 102 | 1.65 × 102 | 2.23 × 102 | |
rank | 2 | 6 | 5 | 7 | 3 | 8 | 11 | 9 | 10 | 4 | 1 | |
F29 | Mean | 1.35 × 104 | 2.77 × 105 | 7.43 × 105 | 1.58 × 107 | 8.47 × 106 | 5.56 × 106 | 1.25 × 108 | 1.18 × 107 | 1.76 × 108 | 4.76 × 104 | 1.82 × 104 |
Best | 8.11 × 103 | 1.73 × 104 | 1.09 × 105 | 9.60 × 103 | 1.34 × 106 | 1.83 × 106 | 9.79 × 106 | 2.32 × 106 | 3.66 × 107 | 1.27 × 104 | 8.31 × 103 | |
Std | 4.81 × 103 | 2.81 × 105 | 4.80 × 105 | 8.06 × 107 | 6.00 × 106 | 4.23 × 106 | 2.66 × 108 | 8.97 × 106 | 7.05 × 107 | 3.22 × 104 | 8.04 × 103 | |
rank | 1 | 4 | 5 | 9 | 7 | 6 | 10 | 8 | 11 | 3 | 2 | |
Count | 5 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 19 | |
Friedman Rank | 2.5172 | 3.5172 | 5.0345 | 8.6552 | 5.7241 | 7.8276 | 10.0690 | 6.5172 | 10.0345 | 4.3793 | 1.7241 |
F | Result | AGSMA | AOSMA | MSMA | DE | GWO | HHO | PSO | CSA | SSA | SMA | ESMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 8.34 × 107 | 3.47 × 109 | 4.46 × 109 | 1.15 × 1010 | 1.21 × 1010 | 2.68 × 108 | 2.68 × 1010 | 1.11 × 109 | 7.88 × 1010 | 5.49 × 105 | 3.17 × 104 |
Best | 9.97 × 103 | 8.00 × 107 | 1.97 × 109 | 1.70 × 107 | 2.38 × 109 | 1.45 × 108 | 1.62 × 1010 | 6.11 × 108 | 4.10 × 1010 | 2.59 × 105 | 1.03 × 104 | |
Std | 1.87 × 108 | 2.86 × 109 | 1.96 × 109 | 1.64 × 1010 | 4.88 × 109 | 8.24 × 107 | 7.79 × 109 | 3.43 × 108 | 1.44 × 1010 | 2.25 × 105 | 1.91 × 104 | |
rank | 3 | 6 | 7 | 8 | 9 | 4 | 10 | 5 | 11 | 2 | 1 | |
F2 | Mean | 9.84 × 104 | 9.19 × 104 | 1.56 × 105 | 5.33 × 105 | 1.28 × 105 | 1.35 × 105 | 4.25 × 105 | 1.12 × 105 | 1.82 × 105 | 8.16 × 104 | 2.86 × 104 |
Best | 5.28 × 104 | 5.18 × 104 | 1.02 × 105 | 3.22 × 105 | 8.87 × 104 | 1.01 × 105 | 1.98 × 105 | 7.91 × 104 | 1.37 × 105 | 4.68 × 104 | 1.42 × 104 | |
Std | 2.19 × 104 | 1.99 × 104 | 3.51 × 104 | 1.84 × 105 | 2.01 × 104 | 2.12 × 104 | 1.72 × 105 | 2.05 × 104 | 4.20 × 104 | 2.94 × 104 | 9.77 × 103 | |
rank | 4 | 3 | 8 | 11 | 6 | 7 | 10 | 5 | 9 | 2 | 1 | |
F3 | Mean | 5.89 × 102 | 7.82 × 102 | 9.32 × 102 | 2.36 × 103 | 1.54 × 103 | 8.89 × 102 | 3.60 × 103 | 1.13 × 103 | 1.64 × 104 | 5.91 × 102 | 5.52 × 102 |
Best | 4.95 × 102 | 5.71 × 102 | 6.12 × 102 | 6.24 × 102 | 7.52 × 102 | 7.63 × 102 | 2.00 × 103 | 8.40 × 102 | 6.02 × 103 | 4.89 × 102 | 4.49 × 102 | |
Std | 7.35 × 101 | 2.30 × 102 | 3.49 × 102 | 3.14 × 103 | 5.68 × 102 | 1.68 × 102 | 1.15 × 103 | 1.97 × 102 | 6.09 × 103 | 6.43 × 101 | 3.81 × 101 | |
rank | 2 | 4 | 6 | 9 | 8 | 5 | 10 | 7 | 11 | 3 | 1 | |
F4 | Mean | 7.61 × 102 | 7.12 × 102 | 7.95 × 102 | 9.09 × 102 | 7.42 × 102 | 9.28 × 102 | 1.11 × 103 | 8.45 × 102 | 1.18 × 103 | 7.88 × 102 | 7.48 × 102 |
B × 10st | 6.61 × 102 | 6.36 × 102 | 7.18 × 102 | 7.62 × 102 | 6.51 × 102 | 8.38 × 102 | 1.00 × 103 | 7.67 × 102 | 1.11 × 103 | 6.71 × 102 | 6.58 × 102 | |
Std | 4.03 × 101 | 3.91 × 101 | 3.35 × 101 | 9.15 × 101 | 4.13 × 101 | 2.88 × 101 | 4.40 × 101 | 3.11 × 101 | 5.33 × 101 | 4.57 × 101 | 5.43 × 101 | |
rank | 4 | 1 | 6 | 8 | 2 | 9 | 10 | 7 | 11 | 5 | 3 | |
F5 | Mean | 6.46 × 102 | 6.27 × 102 | 6.29 × 102 | 6.54 × 102 | 6.29 × 102 | 6.76 × 102 | 6.75 × 102 | 6.66 × 102 | 6.90 × 102 | 6.41 × 102 | 6.23 × 102 |
Best | 6.24 × 102 | 6.12 × 102 | 6.19 × 102 | 6.41 × 102 | 6.13 × 102 | 6.68 × 102 | 6.54 × 102 | 6.56 × 102 | 6.69 × 102 | 6.20 × 102 | 6.16 × 102 | |
Std | 1.32 × 101 | 6.28 × 100 | 4.01 × 100 | 1.36 × 101 | 4.86 × 100 | 5.26 × 100 | 1.07 × 101 | 5.17 × 100 | 8.89 × 100 | 1.27 × 101 | 8.26 × 100 | |
rank | 6 | 2 | 3 | 7 | 4 | 10 | 9 | 8 | 11 | 5 | 1 | |
F6 | Mean | 1.08 × 103 | 1.12 × 103 | 1.19 × 103 | 2.11 × 103 | 1.13 × 103 | 1.85 × 103 | 1.80 × 103 | 1.64 × 103 | 2.41 × 103 | 1.11 × 103 | 1.07 × 103 |
Best | 9.78 × 102 | 9.85 × 102 | 1.06 × 103 | 1.23 × 103 | 9.92 × 102 | 1.70 × 103 | 1.61 × 103 | 1.31 × 103 | 2.03 × 103 | 1.00 × 103 | 9.70 × 102 | |
Std | 6.87 × 101 | 9.01 × 101 | 5.92 × 101 | 2.52 × 102 | 7.09 × 101 | 8.69 × 101 | 7.46 × 101 | 1.26 × 102 | 1.87 × 102 | 8.35 × 101 | 6.01 × 101 | |
rank | 2 | 4 | 6 | 10 | 5 | 9 | 8 | 7 | 11 | 3 | 1 | |
F7 | Mean | 1.08 × 103 | 1.04 × 103 | 1.09 × 103 | 1.24 × 103 | 1.05 × 103 | 1.20 × 103 | 1.42 × 103 | 1.17 × 103 | 1.48 × 103 | 1.07 × 103 | 1.02 × 103 |
Best | 9.66 × 102 | 9.48 × 102 | 1.03 × 103 | 1.01 × 103 | 9.85 × 102 | 1.12 × 103 | 1.31 × 103 | 1.08 × 103 | 1.36 × 103 | 1.01 × 103 | 9.45 × 102 | |
Std | 5.74 × 101 | 3.16 × 101 | 3.25 × 101 | 1.00 × 102 | 3.67 × 101 | 3.06 × 101 | 5.17 × 101 | 4.27 × 101 | 5.09 × 101 | 5.91 × 101 | 4.66 × 101 | |
rank | 5 | 2 | 6 | 9 | 3 | 8 | 10 | 7 | 11 | 4 | 1 | |
F8 | Mean | 1.14 × 104 | 6.83 × 103 | 9.09 × 103 | 2.88 × 104 | 1.10 × 104 | 2.88 × 104 | 2.96 × 104 | 1.35 × 104 | 3.54 × 104 | 1.38 × 104 | 1.05 × 104 |
Best | 4.43 × 103 | 3.64 × 103 | 4.65 × 103 | 8.89 × 103 | 4.60 × 103 | 2.28 × 104 | 1.12 × 104 | 1.09 × 104 | 2.33 × 104 | 5.73 × 103 | 4.26 × 103 | |
Std | 4.97 × 103 | 3.77 × 103 | 2.78 × 103 | 1.43 × 104 | 4.72 × 103 | 3.12 × 103 | 9.08 × 103 | 2.20 × 103 | 7.91 × 103 | 4.70 × 103 | 4.02 × 103 | |
rank | 5 | 1 | 2 | 9 | 4 | 8 | 10 | 6 | 11 | 7 | 3 | |
F9 | Mean | 7.58 × 103 | 7.63 × 103 | 1.50 × 104 | 1.28 × 104 | 7.85 × 103 | 9.65 × 103 | 1.47 × 104 | 8.50 × 103 | 1.53 × 104 | 7.81 × 103 | 7.25 × 103 |
Best | 5.32 × 103 | 5.71 × 103 | 1.39 × 104 | 8.25 × 103 | 5.87 × 103 | 7.92 × 103 | 1.22 × 104 | 6.54 × 103 | 1.48 × 104 | 6.02 × 103 | 5.75 × 103 | |
Std | 8.96 × 102 | 9.11 × 102 | 4.52 × 102 | 1.61 × 103 | 1.54 × 103 | 8.61 × 102 | 8.66 × 102 | 9.90 × 102 | 4.96 × 102 | 1.07 × 103 | 7.49 × 102 | |
rank | 2 | 3 | 10 | 8 | 5 | 7 | 9 | 6 | 11 | 4 | 1 | |
F10 | Mean | 1.53 × 103 | 1.42 × 103 | 6.93 × 103 | 2.16 × 104 | 6.28 × 103 | 1.73 × 103 | 2.09 × 104 | 3.16 × 103 | 1.21 × 104 | 1.43 × 103 | 1.36 × 103 |
Best | 1.33 × 103 | 1.24 × 103 | 5.42 × 103 | 2.49 × 103 | 2.88 × 103 | 1.56 × 103 | 5.49 × 103 | 2.33 × 103 | 5.61 × 103 | 1.24 × 103 | 1.23 × 103 | |
Std | 3.09 × 102 | 8.29 × 101 | 1.83 × 103 | 1.83 × 104 | 1.97 × 103 | 1.54 × 102 | 1.81 × 104 | 6.72 × 102 | 4.21 × 103 | 7.16 × 101 | 5.00 × 101 | |
rank | 4 | 2 | 8 | 11 | 7 | 5 | 10 | 6 | 9 | 3 | 1 | |
F11 | Mean | 1.51 × 107 | 9.07 × 107 | 4.15 × 108 | 1.41 × 109 | 1.31 × 109 | 2.46 × 108 | 1.52 × 1010 | 4.69 × 108 | 1.52 × 1010 | 2.49 × 107 | 1.25 × 107 |
Best | 1.94 × 106 | 9.82 × 106 | 4.19 × 107 | 1.62 × 107 | 1.45 × 108 | 4.75 × 107 | 4.99 × 109 | 1.35 × 108 | 8.19 × 109 | 5.71 × 106 | 7.75 × 105 | |
Std | 8.64 × 106 | 2.35 × 108 | 7.60 × 108 | 2.40 × 109 | 1.25 × 109 | 2.13 × 108 | 1.11 × 1010 | 3.20 × 108 | 3.55 × 109 | 1.17 × 107 | 6.83 × 106 | |
rank | 2 | 4 | 6 | 9 | 8 | 5 | 11 | 7 | 10 | 3 | 1 | |
F12 | Mean | 2.08 × 104 | 4.57 × 105 | 1.34 × 107 | 3.57 × 108 | 3.45 × 108 | 1.35 × 107 | 6.11 × 109 | 7.29 × 105 | 4.49 × 109 | 1.03 × 105 | 3.92 × 104 |
B × 10st | 4.19 × 103 | 1.62 × 104 | 1.50 × 106 | 2.35 × 104 | 7.07 × 105 | 1.61 × 106 | 8.22 × 108 | 5.95 × 104 | 2.38 × 109 | 3.64 × 104 | 1.19 × 104 | |
Std | 1.13 × 104 | 1.95 × 106 | 3.10 × 107 | 8.17 × 108 | 8.59 × 108 | 3.37 × 107 | 6.66 × 109 | 5.77 × 105 | 1.18 × 109 | 3.33 × 104 | 1.75 × 104 | |
rank | 1 | 4 | 6 | 9 | 8 | 7 | 11 | 5 | 10 | 3 | 2 | |
F13 | Mean | 2.67 × 105 | 4.00 × 105 | 1.10 × 106 | 1.89 × 106 | 1.21 × 106 | 3.20 × 106 | 2.78 × 107 | 1.17 × 106 | 4.50 × 106 | 4.69 × 105 | 2.65 × 105 |
Best | 8.84 × 104 | 6.31 × 104 | 3.94 × 104 | 1.79 × 105 | 6.35 × 104 | 2.12 × 105 | 9.70 × 105 | 8.45 × 104 | 1.34 × 106 | 8.69 × 104 | 5.53 × 104 | |
Std | 1.91 × 105 | 2.44 × 105 | 9.82 × 105 | 2.96 × 106 | 1.26 × 106 | 2.42 × 106 | 5.00 × 107 | 9.21 × 105 | 2.33 × 106 | 2.59 × 105 | 1.64 × 105 | |
rank | 2 | 3 | 5 | 8 | 7 | 9 | 11 | 6 | 10 | 4 | 1 | |
F14 | Mean | 1.17 × 104 | 1.10 × 105 | 6.46 × 105 | 2.33 × 107 | 3.93 × 107 | 8.07 × 105 | 3.03 × 108 | 4.56 × 104 | 1.58 × 109 | 3.23 × 104 | 1.65 × 104 |
Best | 1.92 × 103 | 1.01 × 104 | 4.55 × 104 | 3.05 × 103 | 3.51 × 104 | 1.18 × 105 | 1.02 × 108 | 8.41 × 103 | 5.68 × 108 | 5.26 × 103 | 4.65 × 103 | |
Std | 7.44 × 103 | 1.92 × 105 | 1.87 × 106 | 8.23 × 107 | 1.13 × 108 | 3.12 × 105 | 1.34 × 108 | 4.59 × 104 | 5.64 × 108 | 1.22 × 104 | 8.23 × 103 | |
rank | 1 | 5 | 6 | 8 | 9 | 7 | 10 | 4 | 11 | 3 | 2 | |
F15 | Mean | 3.36 × 103 | 3.34 × 103 | 3.45 × 103 | 5.00 × 103 | 3.20 × 103 | 4.40 × 103 | 6.26 × 103 | 4.90 × 103 | 6.20 × 103 | 3.59 × 103 | 3.43 × 103 |
Best | 2.21 × 103 | 2.71 × 103 | 2.52 × 103 | 3.19 × 103 | 2.46 × 103 | 2.91 × 103 | 4.87 × 103 | 3.85 × 103 | 5.68 × 103 | 2.66 × 103 | 2.75 × 103 | |
Std | 3.98 × 102 | 4.59 × 102 | 4.88 × 102 | 1.01 × 103 | 4.09 × 102 | 5.13 × 102 | 1.19 × 103 | 6.09 × 102 | 5.01 × 102 | 4.14 × 102 | 4.35 × 102 | |
rank | 3 | 2 | 5 | 9 | 1 | 7 | 11 | 8 | 10 | 6 | 4 | |
F16 | Mean | 3.04 × 103 | 3.04 × 103 | 3.24 × 103 | 4.04 × 103 | 3.15 × 103 | 3.87 × 103 | 5.12 × 103 | 3.70 × 103 | 5.42 × 103 | 3.32 × 103 | 3.14 × 103 |
Best | 2.29 × 103 | 2.19 × 103 | 2.55 × 103 | 3.44 × 103 | 2.46 × 103 | 2.99 × 103 | 4.08 × 103 | 2.90 × 103 | 4.54 × 103 | 2.42 × 103 | 2.21 × 103 | |
Std | 3.72 × 102 | 2.88 × 102 | 3.99 × 102 | 6.98 × 102 | 4.28 × 102 | 4.04 × 102 | 6.12 × 102 | 3.80 × 102 | 4.82 × 102 | 3.79 × 102 | 3.65 × 102 | |
rank | 2 | 1 | 5 | 9 | 4 | 8 | 10 | 7 | 11 | 6 | 3 | |
F17 | Mean | 4.22 × 106 | 3.68 × 106 | 5.13 × 106 | 2.76 × 107 | 1.19 × 107 | 6.84 × 106 | 3.99 × 107 | 4.86 × 106 | 4.89 × 107 | 4.73 × 106 | 2.74 × 106 |
Best | 2.79 × 105 | 5.26 × 105 | 1.12 × 105 | 1.95 × 106 | 1.52 × 106 | 1.13 × 106 | 4.17 × 106 | 4.23 × 105 | 1.09 × 107 | 2.43 × 105 | 7.67 × 105 | |
Std | 3.21 × 106 | 3.22 × 106 | 5.04 × 106 | 4.20 × 107 | 1.71 × 107 | 6.77 × 106 | 4.31 × 107 | 3.24 × 106 | 2.57 × 107 | 2.74 × 106 | 1.71 × 106 | |
rank | 3 | 2 | 6 | 9 | 8 | 7 | 10 | 5 | 11 | 4 | 1 | |
F18 | Mean | 2.28 × 104 | 2.11 × 104 | 1.55 × 105 | 3.18 × 108 | 6.66 × 106 | 1.41 × 106 | 2.25 × 108 | 2.90 × 106 | 6.62 × 108 | 2.34 × 104 | 1.49 × 104 |
Best | 2.13 × 103 | 3.14 × 103 | 4.29 × 104 | 2.35 × 103 | 6.79 × 104 | 3.39 × 105 | 5.08 × 107 | 5.54 × 104 | 2.46 × 108 | 2.53 × 103 | 2.43 × 103 | |
Std | 1.63 × 104 | 2.18 × 104 | 1.27 × 105 | 9.35 × 108 | 1.00 × 107 | 1.30 × 106 | 2.07 × 108 | 2.99 × 106 | 2.05 × 108 | 1.78 × 104 | 1.27 × 104 | |
rank | 3 | 2 | 5 | 10 | 8 | 6 | 9 | 7 | 11 | 4 | 1 | |
F19 | Mean | 3.23 × 103 | 3.22 × 103 | 3.79 × 103 | 4.50 × 103 | 3.34 × 103 | 3.45 × 103 | 4.24 × 103 | 3.29 × 103 | 4.33 × 103 | 3.35 × 103 | 3.16 × 103 |
Best | 2.50 × 103 | 2.47 × 103 | 3.42 × 103 | 3.34 × 103 | 2.47 × 103 | 3.07 × 103 | 3.81 × 103 | 2.72 × 103 | 3.82 × 103 | 2.86 × 103 | 2.56 × 103 | |
Std | 2.76 × 102 | 3.44 × 102 | 2.29 × 102 | 6.11 × 102 | 4.69 × 102 | 2.51 × 102 | 2.80 × 102 | 3.39 × 102 | 2.06 × 102 | 2.43 × 102 | 2.84 × 102 | |
rank | 3 | 2 | 8 | 11 | 5 | 7 | 9 | 4 | 10 | 6 | 1 | |
F20 | Mean | 2.54 × 103 | 2.52 × 103 | 2.59 × 103 | 2.76 × 103 | 2.54 × 103 | 2.89 × 103 | 2.95 × 103 | 2.74 × 103 | 2.94 × 103 | 2.55 × 103 | 2.48 × 103 |
Best | 2.47 × 103 | 2.44 × 103 | 2.53 × 103 | 2.53 × 103 | 2.46 × 103 | 2.75 × 103 | 2.84 × 103 | 2.53 × 103 | 2.83 × 103 | 2.47 × 103 | 2.47 × 103 | |
Std | 4.56 × 101 | 3.15 × 101 | 2.78 × 101 | 9.95 × 101 | 7.53 × 101 | 8.33 × 101 | 6.88 × 101 | 7.80 × 101 | 5.70 × 101 | 5.72 × 101 | 4.14 × 101 | |
rank | 3 | 2 | 6 | 8 | 4 | 9 | 11 | 7 | 10 | 5 | 1 | |
F21 | Mean | 9.35 × 103 | 9.46 × 103 | 1.64 × 104 | 1.44 × 104 | 8.81 × 103 | 1.19 × 104 | 1.60 × 104 | 1.09 × 104 | 1.67 × 104 | 9.37 × 103 | 8.70 × 103 |
Best | 6.96 × 103 | 7.38 × 103 | 1.63 × 104 | 1.09 × 104 | 7.87 × 103 | 1.02 × 104 | 1.39 × 104 | 7.21 × 103 | 1.07 × 104 | 7.06 × 103 | 6.58 × 103 | |
Std | 1.16 × 103 | 8.74 × 102 | 9.38 × 102 | 1.94 × 103 | 1.53 × 103 | 8.20 × 102 | 8.64 × 102 | 1.91 × 103 | 1.10 × 103 | 9.86 × 102 | 1.51 × 103 | |
rank | 3 | 5 | 10 | 8 | 2 | 7 | 9 | 6 | 11 | 4 | 1 | |
F22 | Mean | 2.98 × 103 | 2.97 × 103 | 3.05 × 103 | 3.19 × 103 | 3.04 × 103 | 3.94 × 103 | 4.36 × 103 | 3.82 × 103 | 3.57 × 103 | 3.00 × 103 | 2.95 × 103 |
Best | 2.88 × 103 | 2.85 × 103 | 3.00 × 103 | 2.99 × 103 | 2.93 × 103 | 3.52 × 103 | 3.86 × 103 | 3.40 × 103 | 3.41 × 103 | 2.88 × 103 | 2.91 × 103 | |
Std | 5.20 × 101 | 3.85 × 101 | 3.90 × 101 | 9.37 × 101 | 8.17 × 101 | 2.30 × 102 | 3.72 × 102 | 2.06 × 102 | 6.32 × 101 | 5.28 × 101 | 4.18 × 101 | |
rank | 3 | 2 | 6 | 7 | 5 | 10 | 11 | 9 | 8 | 4 | 1 | |
F23 | Mean | 3.11 × 103 | 3.10 × 103 | 3.29 × 103 | 3.36 × 103 | 3.21 × 103 | 4.43 × 103 | 4.68 × 103 | 3.97 × 103 | 3.62 × 103 | 3.15 × 103 | 3.13 × 103 |
Best | 3.02 × 103 | 3.01 × 103 | 3.21 × 103 | 3.14 × 103 | 3.03 × 103 | 3.74 × 103 | 4.16 × 103 | 3.60 × 103 | 3.51 × 103 | 3.04 × 103 | 3.05 × 103 | |
Std | 4.71 × 101 | 4.15 × 101 | 3.87 × 101 | 1.02 × 102 | 1.17 × 102 | 2.23 × 102 | 3.09 × 102 | 2.74 × 102 | 5.67 × 101 | 6.25 × 101 | 4.26 × 101 | |
rank | 2 | 1 | 6 | 7 | 5 | 10 | 11 | 9 | 8 | 4 | 3 | |
F24 | Mean | 3.16 × 103 | 3.32 × 103 | 3.46 × 103 | 3.76 × 103 | 3.84 × 103 | 3.27 × 103 | 6.19 × 103 | 3.50 × 103 | 1.38 × 104 | 3.18 × 103 | 3.08 × 103 |
Best | 3.08 × 103 | 3.09 × 103 | 3.27 × 103 | 3.11 × 103 | 3.39 × 103 | 3.14 × 103 | 4.14 × 103 | 3.26 × 103 | 9.45 × 103 | 2.97 × 103 | 2.99 × 103 | |
Std | 7.06 × 101 | 3.30 × 102 | 1.46 × 102 | 7.74 × 102 | 3.51 × 102 | 6.40 × 101 | 1.13 × 103 | 1.24 × 102 | 2.03 × 103 | 3.92 × 101 | 3.25 × 101 | |
rank | 2 | 5 | 6 | 8 | 9 | 4 | 10 | 7 | 11 | 3 | 1 | |
F25 | Mean | 5.49 × 103 | 6.03 × 103 | 6.64 × 103 | 8.98 × 103 | 6.98 × 103 | 1.10 × 104 | 1.28 × 104 | 1.13 × 104 | 1.45 × 104 | 5.60 × 103 | 5.22 × 103 |
Best | 3.02 × 103 | 5.10 × 103 | 4.81 × 103 | 7.33 × 103 | 5.80 × 103 | 6.95 × 103 | 6.84 × 103 | 4.65 × 103 | 1.09 × 104 | 2.91 × 103 | 2.90 × 103 | |
Std | 1.39 × 103 | 5.50 × 102 | 1.10 × 103 | 9.62 × 102 | 6.86 × 102 | 1.63 × 103 | 3.62 × 103 | 2.51 × 103 | 1.77 × 103 | 1.81 × 103 | 2.21 × 103 | |
rank | 2 | 4 | 5 | 7 | 6 | 8 | 10 | 9 | 11 | 3 | 1 | |
F26 | Mean | 3.51 × 103 | 3.46 × 103 | 3.54 × 103 | 3.75 × 103 | 3.71 × 103 | 4.62 × 103 | 5.22 × 103 | 5.38 × 103 | 4.44 × 103 | 3.49 × 103 | 3.53 × 103 |
Best | 3.41 × 103 | 3.36 × 103 | 3.40 × 103 | 3.44 × 103 | 3.44 × 103 | 3.84 × 103 | 4.28 × 103 | 4.59 × 103 | 4.13 × 103 | 3.36 × 103 | 3.25 × 103 | |
Std | 9.09 × 101 | 7.00 × 101 | 8.62 × 101 | 1.72 × 102 | 1.29 × 102 | 4.15 × 102 | 6.15 × 102 | 5.08 × 102 | 2.00 × 102 | 8.61 × 101 | 8.98 × 101 | |
rank | 3 | 1 | 5 | 7 | 6 | 9 | 10 | 11 | 8 | 2 | 4 | |
F27 | Mean | 3.35 × 103 | 4.54 × 103 | 3.98 × 103 | 6.19 × 103 | 4.38 × 103 | 3.89 × 103 | 6.47 × 103 | 4.21 × 103 | 9.20 × 103 | 3.48 × 103 | 3.41 × 103 |
Best | 3.32 × 103 | 3.54 × 103 | 3.66 × 103 | 3.62 × 103 | 3.93 × 103 | 3.49 × 103 | 4.75 × 103 | 3.73 × 103 | 7.80 × 103 | 3.39 × 103 | 3.30 × 103 | |
Std | 1.17 × 102 | 9.13 × 102 | 2.48 × 102 | 1.96 × 103 | 4.03 × 102 | 2.08 × 102 | 1.37 × 103 | 2.24 × 102 | 1.24 × 103 | 2.62 × 101 | 3.60 × 101 | |
rank | 1 | 8 | 5 | 9 | 7 | 4 | 10 | 6 | 11 | 3 | 2 | |
F28 | Mean | 4.36 × 103 | 4.71 × 103 | 4.80 × 103 | 5.52 × 103 | 4.90 × 103 | 6.38 × 103 | 8.79 × 103 | 7.41 × 103 | 8.53 × 103 | 4.67 × 103 | 4.38 × 103 |
Best | 3.94 × 103 | 4.26 × 103 | 4.21 × 103 | 4.57 × 103 | 4.04 × 103 | 5.20 × 103 | 6.13 × 103 | 5.92 × 103 | 7.54 × 103 | 3.99 × 103 | 3.93 × 103 | |
Std | 3.25 × 102 | 4.38 × 102 | 3.62 × 102 | 6.92 × 102 | 3.59 × 102 | 6.60 × 102 | 1.55 × 103 | 1.00 × 103 | 9.89 × 102 | 4.47 × 102 | 2.70 × 102 | |
rank | 1 | 4 | 5 | 7 | 6 | 8 | 11 | 9 | 10 | 3 | 2 | |
F29 | Mean | 2.51 × 106 | 1.96 × 107 | 2.94 × 107 | 7.00 × 107 | 1.29 × 108 | 6.66 × 107 | 7.40 × 108 | 2.19 × 108 | 1.41 × 109 | 5.41 × 106 | 1.56 × 106 |
Best | 1.02 × 106 | 7.37 × 106 | 1.23 × 107 | 1.45 × 106 | 6.48 × 107 | 3.92 × 107 | 2.53 × 108 | 1.20 × 108 | 6.77 × 108 | 3.50 × 106 | 8.90 × 105 | |
Std | 1.09 × 106 | 9.32 × 106 | 9.54 × 106 | 1.96 × 108 | 5.47 × 107 | 2.47 × 107 | 6.37 × 108 | 6.19 × 107 | 4.94 × 108 | 1.69 × 106 | 4.86 × 105 | |
rank | 2 | 4 | 5 | 7 | 8 | 6 | 10 | 9 | 11 | 3 | 1 | |
Count | 4 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 19 | |
Friedman Rank | 2.7241 | 3.0690 | 5.9655 | 8.5172 | 5.8276 | 7.2414 | 10.0345 | 6.8621 | 10.3103 | 3.8276 | 1.6207 |
F | Result | AGSMA | AOSMA | MSMA | DE | GWO | HHO | PSO | CSA | SSA | SMA | ESMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 1.05 × 1010 | 3.96 × 1010 | 4.54 × 1010 | 4.41 × 1010 | 5.34 × 1010 | 7.98 × 109 | 1.27 × 1011 | 2.26 × 1010 | 2.63 × 1011 | 5.76 × 107 | 5.82 × 106 |
Best | 4.05 × 109 | 1.70 × 1010 | 3.94 × 1010 | 2.57 × 1010 | 3.07 × 1010 | 5.45 × 109 | 8.98 × 1010 | 1.72 × 1010 | 2.08 × 1011 | 3.13 × 107 | 2.95 × 106 | |
Std | 4.96 × 109 | 9.10 × 109 | 8.74 × 109 | 1.82 × 1010 | 9.14 × 109 | 1.80 × 109 | 1.73 × 1010 | 3.81 × 109 | 2.59 × 1010 | 1.22 × 107 | 1.62 × 106 | |
rank | 4 | 6 | 8 | 7 | 9 | 3 | 10 | 5 | 11 | 2 | 1 | |
F2 | Mean | 3.30 × 105 | 3.99 × 105 | 2.77 × 105 | 1.28 × 106 | 4.14 × 105 | 3.63 × 105 | 1.13 × 106 | 3.12 × 105 | 5.21 × 105 | 5.66 × 105 | 3.21 × 105 |
Best | 2.66 × 105 | 2.51 × 105 | 2.51 × 105 | 7.31 × 105 | 3.08 × 105 | 2.75 × 105 | 4.84 × 105 | 2.60 × 105 | 3.67 × 105 | 2.28 × 105 | 1.50 × 105 | |
Std | 2.18 × 104 | 2.06 × 104 | 1.39 × 104 | 4.92 × 105 | 5.02 × 104 | 1.48 × 104 | 3.23 × 105 | 2.53 × 104 | 1.00 × 105 | 2.41 × 105 | 9.56 × 104 | |
rank | 4 | 6 | 1 | 11 | 7 | 5 | 10 | 2 | 8 | 9 | 3 | |
F3 | Mean | 1.42 × 103 | 2.02 × 103 | 4.01 × 103 | 5.72 × 103 | 5.76 × 103 | 2.64 × 103 | 2.30 × 104 | 4.56 × 103 | 6.08 × 104 | 9.17 × 102 | 8.49 × 102 |
Best | 9.40 × 102 | 1.16 × 103 | 2.67 × 103 | 2.38 × 103 | 3.34 × 103 | 1.79 × 103 | 1.12 × 104 | 3.13 × 103 | 3.94 × 104 | 7.77 × 102 | 7.22 × 102 | |
Std | 3.34 × 102 | 5.17 × 102 | 9.91 × 102 | 2.83 × 103 | 2.18 × 103 | 3.73 × 102 | 6.76 × 103 | 6.77 × 102 | 1.04 × 104 | 7.42 × 101 | 6.89 × 101 | |
rank | 3 | 4 | 7 | 9 | 10 | 6 | 5 | 8 | 11 | 2 | 1 | |
F4 | Mean | 1.31 × 103 | 1.15 × 103 | 1.44 × 103 | 1.68 × 103 | 1.23 × 103 | 1.60 × 103 | 2.00 × 103 | 1.48 × 103 | 2.21 × 103 | 1.37 × 103 | 1.21 × 103 |
Best | 1.05 × 103 | 9.78 × 102 | 1.33 × 103 | 1.38 × 103 | 1.09 × 103 | 1.51 × 103 | 1.80 × 103 | 1.30 × 103 | 2.08 × 103 | 1.08 × 103 | 1.12 × 103 | |
Std | 8.50 × 101 | 7.40 × 101 | 7.66 × 101 | 1.90 × 102 | 1.18 × 102 | 5.10 × 101 | 9.50 × 101 | 6.99 × 101 | 1.00 × 102 | 1.03 × 102 | 9.27 × 101 | |
rank | 4 | 1 | 6 | 9 | 3 | 8 | 10 | 7 | 11 | 5 | 2 | |
F5 | Mean | 6.64 × 102 | 6.49 × 102 | 6.56 × 102 | 6.76 × 102 | 6.59 × 102 | 6.86 × 102 | 7.01 × 102 | 6.77 × 102 | 7.09 × 102 | 6.71 × 102 | 6.58 × 102 |
Best | 6.50 × 102 | 6.32 × 102 | 6.49 × 102 | 6.53 × 102 | 6.31 × 102 | 6.80 × 102 | 6.83 × 102 | 6.64 × 102 | 6.95 × 102 | 6.42 × 102 | 6.40 × 102 | |
Std | 7.29 × 100 | 5.52 × 100 | 3.78 × 100 | 1.19 × 101 | 4.79 × 100 | 3.89 × 100 | 9.80 × 100 | 3.26 × 100 | 8.65 × 100 | 6.85 × 100 | 7.71 × 100 | |
rank | 5 | 1 | 2 | 7 | 4 | 9 | 10 | 8 | 11 | 6 | 3 | |
F6 | Mean | 2.11 × 103 | 2.27 × 103 | 2.26 × 103 | 5.82 × 103 | 2.11 × 103 | 3.73 × 103 | 3.88 × 103 | 3.27 × 103 | 5.25 × 103 | 2.11 × 103 | 2.00 × 103 |
Best | 1.77 × 103 | 1.92 × 103 | 2.01 × 103 | 3.62 × 103 | 1.87 × 103 | 3.37 × 103 | 3.38 × 103 | 2.86 × 103 | 4.37 × 103 | 1.65 × 103 | 1.64 × 103 | |
Std | 2.06 × 102 | 1.46 × 102 | 1.51 × 102 | 8.78 × 102 | 1.33 × 102 | 1.31 × 102 | 1.68 × 102 | 2.41 × 102 | 3.08 × 102 | 2.46 × 102 | 1.94 × 102 | |
rank | 3 | 6 | 5 | 11 | 2 | 8 | 9 | 7 | 10 | 4 | 1 | |
F7 | Mean | 1.61 × 103 | 1.43 × 103 | 1.76 × 103 | 2.05 × 103 | 1.57 × 103 | 2.06 × 103 | 2.31 × 103 | 1.93 × 103 | 2.50 × 103 | 1.58 × 103 | 1.55 × 103 |
Best | 1.41 × 103 | 1.27 × 103 | 1.56 × 103 | 1.68 × 103 | 1.41 × 103 | 1.94 × 103 | 2.15 × 103 | 1.82 × 103 | 2.30 × 103 | 1.38 × 103 | 1.30 × 103 | |
Std | 1.14 × 102 | 6.67 × 101 | 6.97 × 101 | 2.16 × 102 | 6.02 × 101 | 4.88 × 101 | 9.59 × 101 | 9.96 × 101 | 1.22 × 102 | 8.61 × 101 | 1.01 × 102 | |
rank | 5 | 1 | 6 | 8 | 3 | 9 | 10 | 7 | 11 | 4 | 2 | |
F8 | Mean | 3.23 × 104 | 2.26 × 104 | 5.74 × 104 | 7.80 × 104 | 4.40 × 104 | 6.41 × 104 | 9.13 × 104 | 3.47 × 104 | 1.00 × 105 | 3.45 × 104 | 2.89 × 104 |
Best | 2.35 × 104 | 1.68 × 104 | 3.77 × 104 | 4.81 × 104 | 2.16 × 104 | 5.21 × 104 | 6.37 × 104 | 3.08 × 104 | 8.63 × 104 | 2.63 × 104 | 1.81 × 104 | |
Std | 7.40 × 103 | 3.94 × 103 | 1.24 × 104 | 2.50 × 104 | 1.15 × 104 | 5.61 × 103 | 1.49 × 104 | 3.03 × 103 | 9.75 × 103 | 5.27 × 103 | 3.96 × 103 | |
rank | 3 | 1 | 7 | 9 | 6 | 8 | 10 | 5 | 11 | 4 | 2 | |
F9 | Mean | 1.74 × 104 | 1.70 × 104 | 3.27 × 104 | 2.79 × 104 | 1.77 × 104 | 2.27 × 104 | 3.20 × 104 | 1.94 × 104 | 3.26 × 104 | 1.74 × 104 | 1.62 × 104 |
Best | 1.40 × 104 | 1.40 × 104 | 3.08 × 104 | 2.12 × 104 | 1.42 × 104 | 2.09 × 104 | 2.88 × 104 | 1.58 × 104 | 3.19 × 104 | 1.27 × 104 | 1.37 × 104 | |
Std | 2.09 × 103 | 1.27 × 103 | 7.21 × 102 | 3.15 × 103 | 4.02 × 103 | 1.91 × 103 | 1.07 × 103 | 1.48 × 103 | 6.32 × 102 | 2.68 × 103 | 1.51 × 103 | |
rank | 3 | 2 | 11 | 8 | 5 | 7 | 9 | 6 | 10 | 4 | 1 | |
F10 | Mean | 2.38 × 104 | 2.00 × 104 | 9.67 × 104 | 3.20 × 105 | 7.38 × 104 | 8.47 × 104 | 3.85 × 105 | 7.77 × 104 | 1.58 × 105 | 5.98 × 103 | 3.20 × 103 |
Best | 7.84 × 103 | 5.11 × 103 | 5.16 × 104 | 1.54 × 105 | 4.62 × 104 | 2.90 × 104 | 1.81 × 105 | 5.43 × 104 | 9.77 × 104 | 3.27 × 103 | 2.53 × 103 | |
Std | 1.02 × 104 | 9.00 × 103 | 3.16 × 104 | 1.82 × 105 | 1.56 × 104 | 2.13 × 104 | 2.28 × 105 | 1.76 × 104 | 3.54 × 104 | 1.98 × 103 | 7.16 × 102 | |
rank | 4 | 3 | 7 | 9 | 11 | 6 | 10 | 5 | 8 | 2 | 1 | |
F11 | Mean | 3.58 × 108 | 2.78 × 109 | 4.88 × 109 | 9.02 × 109 | 1.15 × 1010 | 1.49 × 109 | 4.06 × 1010 | 4.84 × 109 | 8.65 × 1010 | 2.31 × 108 | 1.05 × 108 |
Best | 4.14 × 107 | 3.13 × 108 | 2.46 × 109 | 6.04 × 108 | 3.86 × 109 | 8.71 × 108 | 1.35 × 1010 | 2.17 × 109 | 6.51 × 1010 | 7.42 × 107 | 2.60 × 107 | |
Std | 3.18 × 108 | 1.86 × 109 | 2.81 × 109 | 1.00 × 1010 | 5.59 × 109 | 5.87 × 108 | 1.24 × 1010 | 1.58 × 109 | 1.61 × 1010 | 1.02 × 108 | 3.61 × 107 | |
rank | 3 | 5 | 7 | 8 | 10 | 4 | 9 | 6 | 11 | 2 | 1 | |
F12 | Mean | 5.34 × 105 | 1.14 × 108 | 1.69 × 108 | 1.33 × 109 | 1.49 × 109 | 1.72 × 107 | 6.29 × 109 | 2.67 × 107 | 1.70 × 1010 | 9.75 × 105 | 1.46 × 105 |
Best | 8.33 × 103 | 3.86 × 104 | 1.81 × 107 | 4.06 × 106 | 3.02 × 107 | 1.16 × 107 | 2.19 × 109 | 3.72 × 106 | 1.03 × 1010 | 3.06 × 104 | 2.40 × 104 | |
Std | 1.72 × 106 | 1.90 × 108 | 1.90 × 108 | 2.04 × 109 | 1.23 × 109 | 3.99 × 106 | 3.18 × 109 | 1.87 × 107 | 3.33 × 109 | 1.54 × 106 | 2.30 × 105 | |
rank | 2 | 6 | 7 | 8 | 9 | 5 | 10 | 4 | 11 | 3 | 1 | |
F13 | Mean | 1.91 × 106 | 5.10 × 106 | 9.63 × 106 | 1.88 × 107 | 7.70 × 106 | 5.38 × 106 | 3.51 × 107 | 6.92 × 106 | 5.78 × 107 | 3.32 × 106 | 1.80 × 106 |
Best | 3.46 × 105 | 9.33 × 105 | 2.01 × 106 | 3.12 × 106 | 1.42 × 106 | 1.65 × 106 | 1.73 × 107 | 2.21 × 106 | 2.89 × 107 | 9.46 × 105 | 4.91 × 105 | |
Std | 1.15 × 106 | 2.94 × 106 | 4.95 × 106 | 2.17 × 107 | 5.62 × 106 | 1.78 × 106 | 1.33 × 107 | 2.43 × 106 | 1.91 × 107 | 1.95 × 106 | 1.03 × 106 | |
rank | 2 | 4 | 8 | 9 | 7 | 5 | 10 | 6 | 11 | 3 | 1 | |
F14 | Mean | 1.61 × 104 | 1.29 × 107 | 4.77 × 107 | 4.93 × 108 | 3.16 × 108 | 4.37 × 106 | 3.63 × 109 | 2.12 × 105 | 5.93 × 109 | 1.84 × 105 | 4.86 × 104 |
Best | 2.66 × 103 | 3.62 × 104 | 3.65 × 106 | 1.31 × 104 | 3.91 × 106 | 2.46 × 106 | 6.18 × 108 | 3.76 × 104 | 2.94 × 109 | 2.74 × 104 | 1.17 × 104 | |
Std | 3.59 × 104 | 6.22 × 107 | 1.46 × 108 | 1.04 × 109 | 2.90 × 108 | 1.32 × 106 | 1.61 × 109 | 1.35 × 105 | 1.46 × 109 | 3.71 × 105 | 3.59 × 104 | |
rank | 1 | 6 | 7 | 9 | 8 | 5 | 10 | 4 | 11 | 3 | 2 | |
F15 | Mean | 5.77 × 103 | 6.17 × 103 | 7.97 × 103 | 8.23 × 103 | 6.51 × 103 | 8.55 × 103 | 1.30 × 104 | 1.13 × 104 | 1.45 × 104 | 6.24 × 103 | 5.71 × 103 |
Best | 4.40 × 103 | 4.44 × 103 | 5.98 × 103 | 5.49 × 103 | 4.15 × 103 | 6.51 × 103 | 1.10 × 104 | 8.54 × 103 | 1.21 × 104 | 4.49 × 103 | 4.75 × 103 | |
Std | 9.26 × 102 | 8.95 × 102 | 7.89 × 102 | 1.63 × 103 | 6.90 × 102 | 7.66 × 102 | 1.38 × 103 | 1.12 × 103 | 1.38 × 103 | 6.14 × 102 | 7.72 × 102 | |
rank | 2 | 3 | 6 | 7 | 5 | 8 | 10 | 9 | 11 | 4 | 1 | |
F16 | Mean | 5.18 × 103 | 5.20 × 103 | 6.40 × 103 | 8.23 × 103 | 5.30 × 103 | 6.84 × 103 | 5.69 × 105 | 6.82 × 103 | 3.50 × 104 | 5.66 × 103 | 5.45 × 103 |
Best | 4.06 × 103 | 4.49 × 103 | 5.80 × 103 | 5.82 × 103 | 4.00 × 103 | 5.71 × 103 | 1.02 × 104 | 5.46 × 103 | 1.37 × 104 | 4.46 × 103 | 4.37 × 103 | |
Std | 6.17 × 102 | 4.78 × 102 | 6.82 × 102 | 3.11 × 103 | 7.90 × 102 | 7.67 × 102 | 2.88 × 106 | 9.46 × 102 | 3.48 × 104 | 5.59 × 102 | 5.40 × 102 | |
rank | 1 | 2 | 6 | 9 | 3 | 8 | 11 | 7 | 10 | 5 | 4 | |
F17 | Mean | 4.50 × 106 | 6.62 × 106 | 6.41 × 107 | 4.41 × 107 | 6.88 × 106 | 8.76 × 106 | 6.50 × 107 | 4.76 × 106 | 1.09 × 108 | 7.10 × 106 | 4.16 × 106 |
Best | 1.30 × 106 | 1.68 × 106 | 1.65 × 107 | 4.97 × 106 | 2.62 × 106 | 2.25 × 106 | 1.69 × 107 | 2.25 × 106 | 4.62 × 107 | 1.56 × 106 | 5.91 × 105 | |
Std | 2.20 × 106 | 3.52 × 106 | 4.65 × 107 | 3.05 × 107 | 3.77 × 106 | 4.55 × 106 | 3.17 × 107 | 1.75 × 106 | 3.66 × 107 | 2.83 × 106 | 2.43 × 106 | |
rank | 2 | 4 | 9 | 8 | 5 | 7 | 10 | 3 | 11 | 6 | 1 | |
F18 | Mean | 1.99 × 104 | 1.13 × 107 | 1.67 × 107 | 4.60 × 108 | 2.45 × 108 | 1.96 × 107 | 2.83 × 109 | 1.49 × 107 | 5.51 × 109 | 1.22 × 105 | 3.26 × 104 |
Best | 3.08 × 103 | 7.23 × 104 | 4.44 × 106 | 8.81 × 103 | 5.84 × 106 | 4.71 × 106 | 6.77 × 108 | 2.69 × 105 | 3.82 × 109 | 5.69 × 104 | 9.20 × 103 | |
Std | 5.74 × 104 | 2.08 × 107 | 1.33 × 107 | 1.18 × 109 | 2.74 × 108 | 1.60 × 107 | 1.70 × 109 | 1.51 × 107 | 1.25 × 109 | 7.04 × 104 | 1.97 × 104 | |
rank | 1 | 4 | 6 | 9 | 8 | 7 | 10 | 5 | 11 | 3 | 2 | |
F19 | Mean | 5.10 × 103 | 5.12 × 103 | 7.19 × 103 | 7.98 × 103 | 5.37 × 103 | 6.04 × 103 | 8.03 × 103 | 5.50 × 103 | 7.97 × 103 | 5.74 × 103 | 4.99 × 103 |
Best | 3.88 × 103 | 4.48 × 103 | 6.38 × 103 | 5.84 × 103 | 4.06 × 103 | 5.36 × 103 | 7.13 × 103 | 4.56 × 103 | 7.27 × 103 | 4.25 × 103 | 3.79 × 103 | |
Std | 6.43 × 102 | 5.52 × 102 | 3.34 × 102 | 1.01 × 103 | 1.22 × 103 | 5.53 × 102 | 3.55 × 102 | 5.71 × 102 | 4.42 × 102 | 5.19 × 102 | 4.72 × 102 | |
rank | 2 | 3 | 8 | 10 | 4 | 7 | 11 | 5 | 9 | 6 | 1 | |
F20 | Mean | 3.11 × 103 | 2.88 × 103 | 3.24 × 103 | 3.50 × 103 | 3.05 × 103 | 4.27 × 103 | 4.36 × 103 | 3.99 × 103 | 4.07 × 103 | 3.09 × 103 | 3.03 × 103 |
Best | 2.85 × 103 | 2.79 × 103 | 3.14 × 103 | 2.99 × 103 | 2.94 × 103 | 3.89 × 103 | 3.73 × 103 | 3.59 × 103 | 3.79 × 103 | 2.84 × 103 | 2.86 × 103 | |
Std | 1.11 × 102 | 7.97 × 101 | 6.59 × 101 | 2.05 × 102 | 7.49 × 101 | 1.75 × 102 | 2.41 × 102 | 1.87 × 102 | 1.02 × 102 | 1.32 × 102 | 9.40 × 101 | |
rank | 5 | 1 | 6 | 7 | 3 | 10 | 11 | 8 | 9 | 4 | 2 | |
F21 | Mean | 2.11 × 104 | 1.98 × 104 | 3.53 × 104 | 3.08 × 104 | 2.24 × 104 | 2.60 × 104 | 3.37 × 104 | 2.34 × 104 | 3.52 × 104 | 2.00 × 104 | 1.94 × 104 |
Best | 1.81 × 104 | 1.71 × 104 | 3.27 × 104 | 2.26 × 104 | 1.75 × 104 | 2.36 × 104 | 3.12 × 104 | 2.13 × 104 | 3.37 × 104 | 1.63 × 104 | 1.63 × 104 | |
Std | 3.77 × 103 | 1.89 × 103 | 5.50 × 102 | 3.41 × 103 | 5.52 × 103 | 1.55 × 103 | 1.33 × 103 | 1.96 × 103 | 5.15 × 102 | 1.38 × 103 | 1.52 × 103 | |
rank | 4 | 2 | 11 | 8 | 5 | 7 | 10 | 6 | 9 | 3 | 1 | |
F22 | Mean | 3.41 × 103 | 3.40 × 103 | 3.69 × 103 | 4.06 × 103 | 3.66 × 103 | 5.73 × 103 | 6.31 × 103 | 6.04 × 103 | 4.83 × 103 | 3.48 × 103 | 3.38 × 103 |
Best | 3.26 × 103 | 3.27 × 103 | 3.58 × 103 | 3.74 × 103 | 3.52 × 103 | 4.90 × 103 | 5.50 × 103 | 5.10 × 103 | 4.42 × 103 | 3.26 × 103 | 3.24 × 103 | |
Std | 8.78 × 101 | 5.72 × 101 | 7.06 × 101 | 2.20 × 102 | 8.76 × 101 | 5.25 × 102 | 4.90 × 102 | 3.16 × 102 | 1.27 × 102 | 8.43 × 101 | 6.65 × 101 | |
rank | 3 | 2 | 6 | 7 | 5 | 9 | 11 | 10 | 8 | 4 | 1 | |
F23 | Mean | 3.97 × 103 | 3.99 × 103 | 4.36 × 103 | 4.86 × 103 | 4.39 × 103 | 7.82 × 103 | 9.96 × 103 | 8.72 × 103 | 6.11 × 103 | 4.16 × 103 | 4.08 × 103 |
Best | 3.77 × 103 | 3.82 × 103 | 4.20 × 103 | 4.40 × 103 | 4.01 × 103 | 6.55 × 103 | 8.41 × 103 | 7.09 × 103 | 5.74 × 103 | 3.89 × 103 | 3.80 × 103 | |
Std | 1.27 × 102 | 8.69 × 101 | 7.93 × 101 | 2.66 × 102 | 1.51 × 102 | 4.86 × 102 | 8.84 × 102 | 7.49 × 102 | 1.54 × 102 | 1.15 × 102 | 1.00 × 102 | |
rank | 1 | 2 | 5 | 7 | 6 | 9 | 11 | 10 | 8 | 4 | 3 | |
F24 | Mean | 4.27 × 103 | 5.25 × 103 | 6.44 × 103 | 1.00 × 104 | 6.79 × 103 | 4.55 × 103 | 1.74 × 104 | 5.94 × 103 | 3.19 × 104 | 3.56 × 103 | 3.52 × 103 |
Best | 3.88 × 103 | 4.24 × 103 | 5.31 × 103 | 4.97 × 103 | 5.51 × 103 | 4.28 × 103 | 1.31 × 104 | 5.21 × 103 | 2.37 × 104 | 3.40 × 103 | 3.40 × 103 | |
Std | 2.90 × 102 | 7.60 × 102 | 5.46 × 102 | 3.51 × 103 | 9.09 × 102 | 2.05 × 102 | 2.01 × 103 | 5.11 × 102 | 3.17 × 103 | 6.55 × 101 | 5.98 × 101 | |
rank | 3 | 5 | 7 | 9 | 8 | 4 | 10 | 6 | 11 | 2 | 1 | |
F25 | Mean | 4.27 × 103 | 5.25 × 103 | 6.44 × 103 | 1.00 × 104 | 6.79 × 103 | 4.55 × 103 | 1.74 × 104 | 5.94 × 103 | 3.19 × 104 | 3.56 × 103 | 3.50 × 103 |
Best | 1.03 × 104 | 1.12 × 104 | 1.55 × 104 | 1.69 × 104 | 1.46 × 104 | 2.36 × 104 | 2.32 × 104 | 1.31 × 104 | 2.92 × 104 | 1.25 × 104 | 1.22 × 104 | |
Std | 8.47 × 102 | 1.03 × 103 | 1.59 × 103 | 2.74 × 103 | 1.15 × 103 | 2.88 × 103 | 1.17 × 104 | 2.95 × 103 | 6.70 × 103 | 8.68 × 102 | 2.99 × 103 | |
rank | 3 | 5 | 7 | 9 | 8 | 4 | 10 | 6 | 11 | 2 | 1 | |
F26 | Mean | 3.71 × 103 | 3.77 × 103 | 3.98 × 103 | 4.16 × 103 | 4.22 × 103 | 5.81 × 103 | 8.75 × 103 | 7.92 × 103 | 7.37 × 103 | 3.72 × 103 | 3.69 × 103 |
Best | 3.54 × 103 | 3.63 × 103 | 3.84 × 103 | 3.66 × 103 | 3.77 × 103 | 4.69 × 103 | 5.86 × 103 | 6.69 × 103 | 6.12 × 103 | 3.57 × 103 | 3.51 × 103 | |
Std | 9.92 × 101 | 1.07 × 102 | 9.29 × 101 | 2.60 × 102 | 1.71 × 102 | 6.91 × 102 | 1.68 × 103 | 1.15 × 103 | 6.48 × 102 | 9.95 × 101 | 9.28 × 101 | |
rank | 2 | 4 | 5 | 6 | 7 | 8 | 11 | 10 | 9 | 3 | 1 | |
F27 | Mean | 4.68 × 103 | 8.49 × 103 | 7.46 × 103 | 1.47 × 104 | 9.50 × 103 | 5.63 × 103 | 1.84 × 104 | 8.55 × 103 | 3.13 × 104 | 3.63 × 103 | 3.59 × 103 |
Best | 3.94 × 103 | 4.16 × 103 | 5.92 × 103 | 7.24 × 103 | 7.14 × 103 | 5.07 × 103 | 1.37 × 104 | 6.77 × 103 | 2.40 × 104 | 3.55 × 103 | 3.52 × 103 | |
Std | 6.17 × 102 | 4.83 × 103 | 1.02 × 103 | 3.51 × 103 | 1.64 × 103 | 5.00 × 102 | 2.80 × 103 | 9.76 × 102 | 3.09 × 103 | 4.67 × 101 | 5.59 × 101 | |
rank | 3 | 6 | 5 | 9 | 8 | 4 | 10 | 7 | 11 | 2 | 1 | |
F28 | Mean | 7.18 × 103 | 7.89 × 103 | 8.67 × 103 | 1.10 × 104 | 9.15 × 103 | 1.15 × 104 | 2.03 × 104 | 1.45 × 104 | 3.52 × 104 | 7.94 × 103 | 7.10 × 103 |
Best | 6.25 × 103 | 5.51 × 103 | 7.44 × 103 | 6.94 × 103 | 7.77 × 103 | 9.32 × 103 | 1.28 × 104 | 1.13 × 104 | 1.97 × 104 | 7.08 × 103 | 6.24 × 103 | |
Std | 6.56 × 102 | 5.70 × 102 | 6.11 × 102 | 6.89 × 103 | 9.36 × 102 | 1.11 × 103 | 6.52 × 103 | 1.70 × 103 | 1.75 × 104 | 5.33 × 102 | 5.69 × 102 | |
rank | 2 | 3 | 5 | 7 | 6 | 8 | 10 | 9 | 11 | 4 | 1 | |
F29 | Mean | 1.91 × 106 | 6.74 × 107 | 1.04 × 108 | 1.44 × 109 | 1.05 × 109 | 1.83 × 108 | 6.26 × 109 | 7.57 × 108 | 1.04 × 1010 | 5.47 × 106 | 1.62 × 106 |
Best | 1.67 × 105 | 2.53 × 106 | 3.98 × 107 | 6.56 × 105 | 1.93 × 108 | 4.27 × 107 | 1.93 × 109 | 3.56 × 108 | 6.21 × 109 | 1.07 × 106 | 5.48 × 105 | |
Std | 2.49 × 106 | 1.06 × 108 | 4.60 × 107 | 3.69 × 109 | 1.13 × 109 | 9.50 × 107 | 2.96 × 109 | 3.30 × 108 | 2.74 × 109 | 2.81 × 106 | 9.17 × 105 | |
rank | 2 | 4 | 5 | 9 | 8 | 6 | 10 | 7 | 11 | 3 | 1 | |
Count | 4 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | |
Friedman Rank | 2.8276 | 3.5172 | 6.4138 | 8.3793 | 6.3103 | 6.6897 | 9.9310 | 6.4828 | 10.2069 | 3.7241 | 1.5172 |
F | Result | AGSMA | AOSMA | MSMA | DE | GWO | HHO | PSO | CSA | SSA | SMA | ESMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F30 | Mean | 3.41 × 104 | 3.09 × 104 | 3.58 × 104 | 1.78 × 105 | 4.83 × 104 | 4.68 × 104 | 1.30 × 105 | 4.17 × 104 | 5.25 × 104 | 3.55 × 104 | 8.28 × 103 |
Best | 2.56 × 104 | 1.40 × 104 | 2.48 × 104 | 6.62 × 104 | 3.13 × 104 | 3.69 × 104 | 4.70 × 104 | 2.57 × 104 | 2.09 × 104 | 2.56 × 104 | 2.07 × 103 | |
Std | 5.89 × 103 | 7.33 × 103 | 5.88 × 103 | 5.53 × 104 | 6.83 × 103 | 4.76 × 103 | 5.34 × 104 | 7.80 × 103 | 1.66 × 104 | 9.13 × 103 | 3.75 × 103 | |
rank | 3 | 2 | 5 | 11 | 8 | 7 | 10 | 6 | 9 | 4 | 1 | |
F31 | Mean | −9.90 × 102 | −9.78 × 102 | −9.11 × 102 | 5.29 × 103 | 2.05 × 102 | −8.91 × 102 | 4.14 × 103 | −7.53 × 102 | −9.17 × 102 | −9.53 × 102 | −1.00 × 103 |
Best | −9.98 × 102 | −9.91 × 102 | −9.48 × 102 | −9.30 × 102 | −5.26 × 102 | −9.75 × 102 | 5.92 × 102 | −8.56 × 102 | −9.75 × 102 | −9.98 × 102 | −1.00 × 103 | |
Std | 3.22 × 100 | 2.41 × 101 | 2.26 × 101 | 1.04 × 104 | 9.29 × 102 | 3.68 × 101 | 3.93 × 103 | 6.87 × 101 | 3.20 × 101 | 1.30 × 101 | 4.41 × 10−2 | |
rank | 2 | 3 | 6 | 11 | 9 | 7 | 10 | 8 | 5 | 4 | 1 | |
F32 | Mean | −8.17 × 102 | −8.16 × 102 | −7.87 × 102 | −7.55 × 102 | −7.30 × 102 | −7.60 × 102 | 2.33 × 102 | −7.25 × 102 | −8.39 × 102 | −8.41 × 102 | −8.44 × 102 |
Best | −8.73 × 102 | −8.73 × 102 | −8.14 × 102 | −8.72 × 102 | −7.91 × 102 | −8.25 × 102 | −6.88 × 102 | −8.17 × 102 | −8.87 × 102 | −8.83 × 102 | −8.88 × 102 | |
Std | 2.89 × 101 | 2.72 × 101 | 1.90 × 101 | 9.84 × 101 | 5.75 × 101 | 3.59 × 101 | 8.36 × 102 | 5.82 × 101 | 2.73 × 101 | 2.13 × 101 | 2.95 × 101 | |
rank | 4 | 5 | 6 | 8 | 9 | 7 | 11 | 10 | 3 | 2 | 1 | |
F33 | Mean | −4.88 × 102 | −3.98 × 102 | −3.27 × 102 | 1.43 × 102 | −9.34 × 101 | −3.80 × 102 | 1.41 × 103 | −3.47 × 102 | −4.96 × 102 | −4.63 × 102 | −4.96 × 102 |
Best | −4.90 × 102 | −4.87 × 102 | −4.22 × 102 | −4.66 × 102 | −4.29 × 102 | −4.63 × 102 | 1.52 × 102 | −4.35 × 102 | −4.97 × 102 | −4.98 × 102 | −4.99 × 102 | |
Std | 2.07 × 101 | 7.22 × 101 | 7.21 × 101 | 4.93 × 102 | 2.10 × 102 | 6.53 × 101 | 9.31 × 102 | 5.58 × 101 | 3.50 × 100 | 1.10 × 101 | 1.61 × 100 | |
rank | 3 | 5 | 8 | 11 | 9 | 6 | 10 | 7 | 2 | 4 | 1 | |
F34 | Mean | −3.30 × 102 | −3.30 × 102 | −2.81 × 102 | −1.32 × 102 | −2.63 × 102 | 1.25 × 101 | −1.72 × 100 | −1.86 × 101 | −1.96 × 102 | −2.11 × 102 | −3.74 × 102 |
Best | −3.55 × 102 | −3.63 × 102 | −3.25 × 102 | −2.33 × 102 | −3.29 × 102 | −1.13 × 102 | −1.08 × 102 | −1.60 × 102 | −3.26 × 102 | −2.96 × 102 | −3.85 × 102 | |
Std | 1.56 × 101 | 2.16 × 101 | 2.05 × 101 | 7.61 × 101 | 4.71 × 101 | 6.62 × 101 | 8.37 × 101 | 8.53 × 101 | 8.19 × 101 | 4.65 × 101 | 6.45 × 100 | |
rank | 2 | 3 | 4 | 10 | 5 | 11 | 9 | 8 | 7 | 6 | 1 | |
F35 | Mean | 2.52 × 101 | −9.08 × 100 | 4.26 × 101 | 2.10 × 102 | 2.88 × 101 | 4.88 × 102 | 1.47 × 102 | 2.38 × 102 | 1.30 × 102 | 7.98 × 101 | 4.79 × 101 |
Best | −4.71 × 101 | −7.42 × 101 | −3.79 × 101 | 4.28 × 101 | −6.09 × 101 | 2.54 × 102 | 8.83 × 101 | 6.76 × 101 | −1.40 × 101 | −1.16 × 101 | −7.33 × 101 | |
Std | 4.52 × 101 | 3.30 × 101 | 2.86 × 101 | 8.82 × 101 | 5.09 × 101 | 1.11 × 102 | 3.88 × 101 | 8.10 × 101 | 6.81 × 101 | 4.93 × 101 | 4.51 × 101 | |
rank | 3 | 1 | 5 | 2 | 4 | 11 | 8 | 10 | 9 | 7 | 6 | |
F36 | Mean | 1.62 × 103 | 2.36 × 103 | 3.72 × 103 | 4.98 × 103 | 3.53 × 103 | 3.96 × 103 | 7.23 × 103 | 4.34 × 103 | 4.25 × 103 | 3.61 × 103 | 6.70 × 102 |
Best | 7.23 × 102 | 1.28 × 103 | 2.41 × 103 | 3.15 × 103 | 1.73 × 103 | 2.45 × 103 | 6.13 × 103 | 3.30 × 103 | 3.19 × 103 | 2.48 × 103 | 6.27 × 101 | |
Std | 5.63 × 102 | 6.89 × 102 | 8.94 × 102 | 1.01 × 103 | 1.49 × 103 | 7.96 × 102 | 5.23 × 102 | 6.44 × 102 | 6.58 × 102 | 6.31 × 102 | 2.60 × 102 | |
rank | 2 | 3 | 6 | 10 | 5 | 7 | 11 | 9 | 8 | 4 | 1 | |
F37 | Mean | 4.56 × 102 | 4.51 × 102 | 5.04 × 102 | 8.27 × 102 | 5.08 × 102 | 1.06 × 103 | 7.74 × 102 | 7.38 × 102 | 5.39 × 102 | 5.66 × 102 | 4.00 × 102 |
Best | 3.90 × 102 | 3.95 × 102 | 4.60 × 102 | 5.22 × 102 | 4.11 × 102 | 8.74 × 102 | 6.39 × 102 | 5.66 × 102 | 4.50 × 102 | 4.70 × 102 | 3.71 × 102 | |
Std | 3.33 × 101 | 3.78 × 101 | 3.14 × 101 | 2.13 × 102 | 5.64 × 101 | 1.01 × 102 | 6.39 × 101 | 1.07 × 102 | 6.12 × 101 | 5.73 × 101 | 1.86 × 101 | |
rank | 2 | 3 | 4 | 10 | 5 | 11 | 9 | 8 | 6 | 7 | 1 | |
F38 | Mean | 5.15 × 102 | 5.12 × 102 | 1.46 × 103 | 1.06 × 105 | 7.63 × 102 | 5.44 × 102 | 2.01 × 104 | 5.47 × 102 | 5.13 × 102 | 5.12 × 102 | 5.06 × 102 |
Best | 5.06 × 102 | 5.04 × 102 | 5.64 × 102 | 5.37 × 102 | 5.13 × 102 | 5.28 × 102 | 5.93 × 102 | 5.23 × 102 | 5.07 × 102 | 5.06 × 102 | 5.03 × 102 | |
Std | 5.49 × 100 | 1.59 × 101 | 1.29 × 103 | 3.77 × 105 | 4.12 × 102 | 1.07 × 101 | 5.16 × 104 | 1.74 × 101 | 4.49 × 100 | 4.03 × 100 | 1.43 × 100 | |
rank | 5 | 3 | 9 | 11 | 8 | 6 | 10 | 7 | 4 | 2 | 1 | |
F39 | Mean | 2.59 × 103 | 3.29 × 103 | 5.82 × 103 | 6.77 × 103 | 4.65 × 103 | 6.41 × 103 | 8.67 × 103 | 6.57 × 103 | 5.56 × 103 | 5.41 × 103 | 1.53 × 103 |
Best | 1.78 × 103 | 2.24 × 103 | 2.38 × 103 | 3.69 × 103 | 3.07 × 103 | 4.89 × 103 | 7.42 × 103 | 4.64 × 103 | 4.11 × 103 | 3.42 × 103 | 1.08 × 103 | |
Std | 4.47 × 102 | 5.69 × 102 | 1.76 × 103 | 1.41 × 103 | 8.01 × 102 | 9.40 × 102 | 6.38 × 102 | 8.84 × 102 | 9.75 × 102 | 8.47 × 102 | 2.51 × 102 | |
Rank | 2 | 3 | 7 | 10 | 4 | 8 | 11 | 9 | 6 | 5 | 1 | |
F40 | Mean | 1.28 × 103 | 1.28 × 103 | 1.29 × 103 | 1.30 × 103 | 1.26 × 103 | 1.34 × 103 | 1.35 × 103 | 1.33 × 103 | 1.28 × 103 | 1.29 × 103 | 1.27 × 103 |
Best | 1.26 × 103 | 1.26 × 103 | 1.27 × 103 | 1.27 × 103 | 1.24 × 103 | 1.32 × 103 | 1.31 × 103 | 1.29 × 103 | 1.26 × 103 | 1.27 × 103 | 1.25 × 103 | |
Std | 9.27 × 100 | 9.15 × 100 | 1.07 × 101 | 1.12 × 101 | 1.15 × 101 | 1.23 × 101 | 2.59 × 101 | 1.86 × 101 | 1.06 × 101 | 1.12 × 101 | 1.02 × 101 | |
Rank | 4 | 3 | 6 | 8 | 2 | 10 | 11 | 9 | 5 | 7 | 1 | |
Count | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | |
Friedman Rank | 2.9091 | 3.0909 | 6.0000 | 9.2727 | 6.1818 | 8.2727 | 10.0000 | 8.2727 | 5.8182 | 4.7273 | 1.4545 |
F | Result | AGSMA | AOSMA | MSMA | DE | GWO | HHO | PSO | CSA | SSA | SMA | ESMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F30 | Mean | 1.72 × 105 | 1.48 × 105 | 1.93 × 105 | 6.20 × 105 | 1.61 × 105 | 2.13 × 105 | 5.36 × 105 | 1.78 × 105 | 2.96 × 105 | 1.87 × 105 | 7.32 × 104 |
Best | 1.47 × 105 | 1.03 × 105 | 1.56 × 105 | 3.99 × 105 | 1.32 × 105 | 1.84 × 105 | 2.99 × 105 | 1.35 × 105 | 2.19 × 105 | 1.46 × 105 | 5.78 × 104 | |
Std | 1.49 × 104 | 1.57 × 104 | 1.91 × 104 | 1.14 × 105 | 1.42 × 104 | 1.37 × 104 | 1.91 × 105 | 1.43 × 104 | 4.60 × 104 | 2.65 × 104 | 9.95 × 103 | |
rank | 4 | 2 | 7 | 11 | 3 | 8 | 10 | 5 | 9 | 6 | 1 | |
F31 | Mean | −5.72 × 102 | 9.07 × 101 | 3.49 × 103 | 2.98 × 104 | 5.67 × 103 | 6.39 × 102 | 2.16 × 104 | 1.95 × 103 | −8.10 × 101 | −7.44 × 102 | −9.34 × 102 |
Best | −8.34 × 102 | −5.70 × 102 | 1.05 × 103 | 3.56 × 103 | 2.19 × 103 | 1.71 × 102 | 1.34 × 104 | 8.95 × 102 | −5.00 × 102 | −7.95 × 102 | −9.72 × 102 | |
Std | 2.61 × 102 | 4.38 × 102 | 1.45 × 103 | 3.86 × 104 | 2.23 × 103 | 3.57 × 102 | 7.83 × 103 | 6.65 × 102 | 2.41 × 102 | 3.15 × 101 | 1.68 × 101 | |
rank | 4 | 5 | 7 | 10 | 8 | 6 | 9 | 11 | 2 | 3 | 1 | |
F32 | Mean | −5.42 × 101 | 9.80 × 102 | 2.88 × 103 | 2.51 × 103 | 2.36 × 103 | 3.66 × 102 | 1.24 × 104 | 1.62 × 103 | −3.56 × 102 | −4.03 × 102 | −4.78 × 102 |
Best | −4.25 × 102 | −2.03 × 102 | 1.53 × 103 | 2.36 × 102 | 1.07 × 103 | −1.51 × 101 | 7.65 × 103 | 1.05 × 103 | −4.92 × 102 | −5.66 × 102 | −5.64 × 102 | |
Std | 1.94 × 102 | 7.42 × 102 | 1.10 × 103 | 2.01 × 103 | 8.17 × 102 | 2.06 × 102 | 2.96 × 103 | 4.11 × 102 | 8.21 × 101 | 8.45 × 101 | 5.53 × 101 | |
rank | 4 | 6 | 10 | 8 | 7 | 5 | 11 | 9 | 3 | 2 | 1 | |
F33 | Mean | 7.20 × 102 | 1.36 × 103 | 2.69 × 103 | 4.38 × 103 | 3.42 × 103 | 1.51 × 103 | 1.14 × 104 | 2.73 × 103 | 3.62 × 102 | −4.75 × 101 | −2.59 × 102 |
Best | 3.59 × 102 | 1.69 × 102 | 2.01 × 103 | 2.09 × 103 | 2.15 × 103 | 9.78 × 102 | 7.10 × 103 | 1.93 × 103 | 6.59 × 101 | −2.38 × 102 | −3.61 × 102 | |
Std | 2.95 × 102 | 5.81 × 102 | 4.73 × 102 | 1.47 × 103 | 7.81 × 102 | 3.41 × 102 | 2.01 × 103 | 5.04 × 102 | 1.82 × 102 | 1.09 × 102 | 5.94 × 101 | |
rank | 4 | 5 | 7 | 10 | 9 | 6 | 11 | 8 | 3 | 2 | 1 | |
F34 | Mean | 2.00 × 102 | 4.77 × 102 | 5.29 × 102 | 2.00 × 103 | 5.50 × 102 | 1.58 × 103 | 1.70 × 103 | 1.73 × 103 | 9.67 × 102 | 8.17 × 102 | 5.55 × 101 |
Best | 6.32 × 101 | 2.08 × 102 | 3.58 × 102 | 1.21 × 103 | 4.25 × 102 | 1.28 × 103 | 1.35 × 103 | 1.24 × 103 | 5.42 × 102 | 4.50 × 102 | −9.04 × 101 | |
Std | 9.60 × 101 | 1.71 × 102 | 7.85 × 101 | 5.33 × 102 | 8.97 × 101 | 1.54 × 102 | 1.87 × 102 | 2.08 × 102 | 3.11 × 102 | 2.59 × 102 | 7.11 × 101 | |
rank | 2 | 3 | 4 | 11 | 5 | 8 | 9 | 10 | 7 | 6 | 1 | |
F35 | Mean | 1.33 × 103 | 1.14 × 103 | 1.24 × 103 | 2.64 × 103 | 1.27 × 103 | 2.76 × 103 | 1.94 × 103 | 2.18 × 103 | 1.70 × 103 | 1.57 × 103 | 1.19 × 103 |
Best | 9.68 × 102 | 9.20 × 102 | 1.08 × 103 | 1.99 × 103 | 8.27 × 102 | 2.45 × 103 | 1.56 × 103 | 1.83 × 103 | 1.34 × 103 | 1.30 × 103 | 9.16 × 102 | |
Std | 1.84 × 102 | 1.39 × 102 | 1.00 × 102 | 4.56 × 102 | 1.38 × 102 | 1.61 × 102 | 2.24 × 102 | 2.25 × 102 | 2.15 × 102 | 1.97 × 102 | 1.82 × 102 | |
rank | 5 | 1 | 3 | 10 | 4 | 11 | 8 | 9 | 7 | 6 | 2 | |
F36 | Mean | 1.26 × 104 | 1.36 × 104 | 2.13 × 104 | 2.44 × 104 | 1.95 × 104 | 2.21 × 104 | 3.23 × 104 | 2.16 × 104 | 1.83 × 104 | 1.57 × 104 | 9.59 × 103 |
Best | 9.21 × 103 | 9.90 × 103 | 1.76 × 104 | 2.01 × 104 | 1.53 × 104 | 1.91 × 104 | 2.98 × 104 | 1.90 × 104 | 1.33 × 104 | 1.34 × 104 | 6.36 × 103 | |
Std | 2.26 × 103 | 1.56 × 103 | 1.53 × 103 | 2.01 × 103 | 5.18 × 103 | 1.51 × 103 | 1.02 × 103 | 1.37 × 103 | 2.18 × 103 | 1.86 × 103 | 1.95 × 103 | |
rank | 2 | 3 | 7 | 11 | 6 | 9 | 10 | 8 | 5 | 4 | 1 | |
F37 | Mean | 1.59 × 103 | 1.95 × 103 | 1.68 × 103 | 5.04 × 103 | 1.70 × 103 | 3.56 × 103 | 3.47 × 103 | 2.95 × 103 | 2.25 × 103 | 2.46 × 103 | 1.31 × 103 |
Best | 1.23 × 103 | 1.63 × 103 | 1.46 × 103 | 3.63 × 103 | 1.40 × 103 | 3.24 × 103 | 3.06 × 103 | 2.43 × 103 | 1.74 × 103 | 1.65 × 103 | 9.94 × 102 | |
Std | 1.66 × 102 | 2.31 × 102 | 1.25 × 102 | 7.79 × 102 | 1.84 × 102 | 1.32 × 102 | 1.75 × 102 | 2.60 × 102 | 2.95 × 102 | 4.23 × 102 | 1.35 × 102 | |
rank | 2 | 5 | 3 | 11 | 4 | 10 | 9 | 8 | 6 | 7 | 1 | |
F38 | Mean | 2.96 × 103 | 1.88 × 103 | 1.04 × 105 | 5.04 × 106 | 9.55 × 104 | 1.05 × 103 | 9.62 × 105 | 1.05 × 104 | 6.68 × 102 | 7.64 × 102 | 5.63 × 102 |
Best | 8.38 × 102 | 6.90 × 102 | 5.83 × 104 | 3.33 × 105 | 1.80 × 104 | 7.37 × 102 | 3.29 × 105 | 2.46 × 103 | 6.36 × 102 | 5.87 × 102 | 5.44 × 102 | |
Std | 2.73 × 103 | 1.70 × 103 | 2.64 × 104 | 4.51 × 106 | 9.01 × 104 | 2.71 × 102 | 4.71 × 105 | 5.15 × 103 | 9.31 × 101 | 3.77 × 101 | 8.12 × 100 | |
rank | 6 | 5 | 9 | 11 | 8 | 4 | 10 | 7 | 2 | 3 | 1 | |
F39 | Mean | 1.37 × 104 | 1.74 × 104 | 2.37 × 104 | 2.87 × 104 | 2.31 × 104 | 2.58 × 104 | 3.39 × 104 | 2.71 × 104 | 2.33 × 104 | 1.97 × 104 | 1.31 × 104 |
Best | 1.01 × 104 | 1.46 × 104 | 2.09 × 104 | 2.10 × 104 | 2.04 × 104 | 2.41 × 104 | 3.18 × 104 | 2.51 × 104 | 1.78 × 104 | 1.59 × 104 | 1.03 × 104 | |
Std | 2.23 × 103 | 1.27 × 103 | 1.91 × 103 | 3.34 × 103 | 2.88 × 103 | 1.04 × 103 | 1.12 × 103 | 1.78 × 103 | 2.00 × 103 | 2.37 × 103 | 1.68 × 103 | |
Rank | 2 | 3 | 7 | 10 | 5 | 8 | 11 | 9 | 6 | 4 | 1 | |
F40 | Mean | 1.55 × 103 | 1.55 × 103 | 1.59 × 103 | 1.60 × 103 | 1.51 × 103 | 2.14 × 103 | 2.05 × 103 | 2.22 × 103 | 1.58 × 103 | 1.59 × 103 | 1.57 × 103 |
Best | 1.52 × 103 | 1.52 × 103 | 1.55 × 103 | 1.55 × 103 | 1.48 × 103 | 1.71 × 103 | 1.75 × 103 | 1.95 × 103 | 1.54 × 103 | 1.54 × 103 | 1.54 × 103 | |
Std | 1.62 × 101 | 1.87 × 101 | 1.61 × 101 | 3.24 × 101 | 1.84 × 101 | 8.10 × 102 | 2.48 × 102 | 2.03 × 102 | 2.85 × 101 | 2.20 × 101 | 1.64 × 101 | |
Rank | 2 | 3 | 6 | 8 | 1 | 10 | 9 | 11 | 5 | 7 | 4 | |
Count | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | |
Friedman Rank | 3.0000 | 3.7273 | 6.3636 | 10.0909 | 5.4545 | 7.7273 | 9.7273 | 8.6364 | 5.0000 | 4.5455 | 1.3636 |
Dim | AGSMA | AOSMA | MSMA | DE | GWO | HHO | PSO | CSA | SSA | SMA | ESMA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CEC2017 | 30 Dim | 1828 | 2050 | 4061 | 669 | 382 | 726 | 280 | 248 | 337 | 676 | 2174 |
50 Dim | 2737 | 3171 | 6792 | 1099 | 661 | 1151 | 430 | 392 | 526 | 997 | 3253 | |
100 Dim | 6081 | 7457 | 16572 | 2451 | 1530 | 2639 | 1065 | 989 | 1214 | 2055 | 7563 | |
CEC2013 | 30 Dim | 665 | 779 | 1766 | 238 | 147 | 271 | 111 | 103 | 137 | 203 | 814 |
100 Dim | 2075 | 2616 | 5510 | 857 | 507 | 916 | 389 | 381 | 457 | 546 | 2743 |
Dimension | p-Value | |
---|---|---|
CEC2017 | 30 Dim | 3.62 × 10−41 |
50 Dim | 1.60 × 10−42 | |
100 Dim | 2.88 × 10−41 | |
CEC2013 | 30 Dim | 2.13 × 10−10 |
100 Dim | 1.66 × 10−12 |
Algorithm | Average | Longest | Rank |
---|---|---|---|
AOA | 31.7220 | 33.5563 | 6 |
AOSMA | 29.9161 | 30.9705 | 3 |
GWO | 32.2190 | 35.5563 | 7 |
DE | 30.0333 | 30.3847 | 5 |
PSO | 29.9747 | 30.9705 | 4 |
CSA | 37.0776 | 39.8994 | 8 |
SMA | 29.9159 | 29.8989 | 2 |
ESMA | 29.7989 | 29.8109 | 1 |
Algorithm | Best Values for Variables | Best Cost | Rank | |||
---|---|---|---|---|---|---|
Ts | Th | R | L | |||
ESMA | 1.3599 | 0.6574 | 67.4205 | 10.0000 | 8.4162 × 103 | 1 |
MSMA | 1.3673 | 0.6848 | 67.6234 | 13.5872 | 8.9391 × 103 | 4 |
AGWO | 1.4598 | 0.7219 | 67.9214 | 10.0000 | 9.4779 × 103 | 5 |
WOA | 1.9397 | 0.8150 | 67.3860 | 22.4523 | 1.3705 × 104 | 6 |
ALO | 1.3008 | 0.6430 | 67.4001 | 23.7021 | 8.8770 × 103 | 3 |
PSO | 1.4234 | 0.6556 | 68.1104 | 10.0000 | 8.8129 × 103 | 2 |
PIO | 1.4506 | 0.9869 | 71.1783 | 28.5520 | 1.3887 × 104 | 7 |
SMA | 1.3375 | 0.7070 | 72.1897 | 27.2172 | 4.7433 × 105 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Li, D.; Zhu, D.; Li, R.; Lin, Z. An Enhanced Slime Mould Algorithm Combines Multiple Strategies. Axioms 2023, 12, 907. https://doi.org/10.3390/axioms12100907
Xiong W, Li D, Zhu D, Li R, Lin Z. An Enhanced Slime Mould Algorithm Combines Multiple Strategies. Axioms. 2023; 12(10):907. https://doi.org/10.3390/axioms12100907
Chicago/Turabian StyleXiong, Wenqing, Dahai Li, Donglin Zhu, Rui Li, and Zhang Lin. 2023. "An Enhanced Slime Mould Algorithm Combines Multiple Strategies" Axioms 12, no. 10: 907. https://doi.org/10.3390/axioms12100907
APA StyleXiong, W., Li, D., Zhu, D., Li, R., & Lin, Z. (2023). An Enhanced Slime Mould Algorithm Combines Multiple Strategies. Axioms, 12(10), 907. https://doi.org/10.3390/axioms12100907