Convergence of Inexact Iterates of Monotone Nonexpansive Mappings with Summable Errors
Abstract
1. Introduction
2. The Main Results
3. An Auxiliary Result
4. Proofs of Theorems 2–4
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alolaiyan, H.A.; Ali, B.; Abbas, M. Fixed point results of Edelstein-Suzuki type multivalued mappings on b-metric spaces with applications. J. Nonlinear Sci. Appl. 2017, 10, 1201–1214. [Google Scholar] [CrossRef][Green Version]
- Betiuk-Pilarska, A.; Benavides, T.D. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. In Fixed Point Theory and Its Applications; Yokohama Publishers: Yokohama, Japan, 2006; pp. 11–32. [Google Scholar]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Edelstein, M. A0n extension of Banach’s contraction principle. Proc. Am. Math. Soc. 1961, 12, 7–10. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63–84. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S. Fixed points of contractive functions. Boll. Un. Mat. Ital. 1972, 5, 26–42. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Convergence and well-posedness properties of uniformly locally contractive mappings. Topol. Methods Nonlinear Anal. accepted for publication.
- Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2006, 22, 223–239. [Google Scholar] [CrossRef]
- Ran, A.C.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Koch, V.R. Projection methods: Swiss army knives for solving feasibility and best approximation problems with half-spaces. Contemp. Math. 2015, 636, 1–40. [Google Scholar]
- Butnariu, D.; Davidi, R.; Herman, G.T.; Kazantsev, I.G. Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 540–547. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 12. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T.; Schulte, R.W.; Tetruashvili, L. Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 2014, 160, 730–747. [Google Scholar] [CrossRef]
- Nikazad, T.; Davidi, R.; Herman, G.T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl. 2012, 28, 19. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, S.; Zaslavski, A.J. Convergence of Inexact Iterates of Monotone Nonexpansive Mappings with Summable Errors. Axioms 2023, 12, 15. https://doi.org/10.3390/axioms12010015
Reich S, Zaslavski AJ. Convergence of Inexact Iterates of Monotone Nonexpansive Mappings with Summable Errors. Axioms. 2023; 12(1):15. https://doi.org/10.3390/axioms12010015
Chicago/Turabian StyleReich, Simeon, and Alexander J. Zaslavski. 2023. "Convergence of Inexact Iterates of Monotone Nonexpansive Mappings with Summable Errors" Axioms 12, no. 1: 15. https://doi.org/10.3390/axioms12010015
APA StyleReich, S., & Zaslavski, A. J. (2023). Convergence of Inexact Iterates of Monotone Nonexpansive Mappings with Summable Errors. Axioms, 12(1), 15. https://doi.org/10.3390/axioms12010015