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Abstract: In our 2006 paper with D. Butnariu, it was shown that the convergence of iterates of
a nonexpansive self-mapping of a complete metric space is stable in the presence of summable
computational errors. In the present paper, we establish such results for monotone nonexpansive
mappings.
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1. Introduction

For more than 60 years now, there has been considerable research activity regarding
the fixed point theory of various classes of nonexpansive operators [1–15]. The starting
point of these efforts is Banach’s seminal result [16] on the existence of a unique fixed
point for a strict contraction. It also concerns the convergence of iterates of a nonexpansive
operator to one of its fixed points. Since that classical theorem, many developments have
taken place in this field. See, for example, [15,17–20].

In our 2006 paper with D. Butnariu [3], it was shown that the convergence of iterates
of a nonexpansive self-mapping of a complete metric space is stable in the presence of
summable computational errors. In the present paper, our goal is to establish such results
for monotone nonexpansive mappings. Note that the study of monotone nonexpansive
mapping is a well-established area of research. For pertinent examples and applications
of solving matrix and ordinary differential equations, see [21,22]. The results of [3] and
the present paper show that the convergence of iterates remains in force even when small
computational errors are taken into account. Needless to say, such errors always occur
in calculations.

Assume that (X, ρ) is a complete metric space. For every point ξ ∈ X and each
non-empty set D ⊂ X, put

ρ(ξ, D) := inf{ρ(ξ, η) : η ∈ D}.

For every point ξ ∈ X and every positive number ∆, put

B(ξ, ∆) := {η ∈ X : ρ(ξ, η) ≤ ∆}.

Finally, for every operator mapping T : X → X, let T0ξ = ξ for every point ξ ∈ X.
In [3] the authors analyzed the convergence of orbits of nonexpansive operators in

complete metric spaces in the presence of computational errors and obtained the following
result (see also Theorem 2.72 on page 97 of [13]).

Theorem 1. Assume that a mapping T : X → X satisfies

ρ(T(x), T(y)) ≤ ρ(x, y) for all x, y ∈ X
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and assume that for every point x ∈ X, the sequence {Tnx}∞
n=1 converges in (X, ρ).

Assume further that the sequences {xn}∞
n=0 ⊂ X and {rn}∞

n=0 ⊂ (0, ∞) satisfy the conditions

∞

∑
n=0

rn < ∞

and
ρ(xn+1, T(xn)) ≤ rn, n = 0, 1, . . . .

Then, the sequence {xn}∞
n=1 converges to a fixed point of T in (X, ρ).

Theorem 1 has found interesting applications and is an important ingredient in the
study of superiorization and perturbation resilience of algorithms. See, for example, [23–27]
and references mentioned therein.

2. The Main Results

Assume that (X, ρ) is a complete metric space equipped with an order ≤, such that
x ≤ x for each x ∈ X, if x, y ∈ X satisfy x ≤ y and y ≤ x, then x = y, and if x, y, z ∈ X
satisfy x ≤ y and y ≤ z, then x ≤ z.

Assume that a mapping T : X → X satisfies

T(x) ≤ T(y) for each x, y ∈ X such that x ≤ y (1)

and
ρ(T(x), T(y)) ≤ ρ(x, y) for each x, y ∈ X such that x ≤ y. (2)

In this paper, we establish the following results which are proved in Section 4.

Theorem 2. Assume that for every point x ∈ X, the sequence {Ti(x)}∞
i=1 converges. Let a

sequence {xi}∞
i=0 satisfy the conditions

∞

∑
i=0

ρ(xi+1, T(xi)) < ∞ (3)

and
xi+1 ≥ T(xi) for each integer i ≥ 0. (4)

Then the sequence {xi}∞
i=0 converges. If, in addition, T is continuous, then its limit is a fixed point

of T.

Theorem 3. Assume that F is a non-empty subset of X, for every point x ∈ X,

lim
i→∞

ρ(Ti(x), F) = 0

and that a sequence {xi}∞
i=0 satisfies (3) and (4). Then limi→∞ ρ(xi, F) = 0.

Theorem 4. Assume that for every point x ∈ X, there exists a compact set E(x) ⊂ X, such that

lim
i→∞

ρ(Ti(x), E(x)) = 0

and that a sequence {xi}∞
i=0 satisfies (3) and (4). Then, there exists a compact set E ⊂ X, such that

limi→∞ ρ(xi, E) = 0.

3. An Auxiliary Result

Lemma 1. Assume that a mapping T : X → X satisfies (1) and (2) and that a sequence {xi}∞
i=0

satisfies
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∞

∑
i=0

ρ(xi+1, T(xi)) < ∞ (5)

and
xi+1 ≥ T(xi) for each integer i ≥ 0, (6)

that n0 ≥ 0 is an integer, and that
yn0 = xn0

and
yi+1 = T(yi)for every integeri > n0. (7)

Then, for each integer n > n0, we have
xn ≥ yn (8)

and

ρ(xn, yn) ≤
n

∑
i=n0+1

ρ(xi, T(xi−1)). (9)

Proof. In view of (6) and (7),

xn0+1 ≥ T(xn0) = T(yn0) = yn0+1,

ρ(yn0+1, xn0+1) = ρ(T(yn0), xn0+1) = ρ(xn0+1, T(xn0))

and relations (8) and (9) hold with n = n0 + 1.
Assume that n > n0 is a natural number and that Equations (8) and (9) hold. By (7),

we have
ρ(xn+1, yn+1) ≤ ρ(xn+1, T(xn)) + ρ(T(xn), T(yn)). (10)

In view of (8),
ρ(T(xn), T(yn)) ≤ ρ(xn, yn). (11)

Relations (9) and (11) imply that

ρ(xn+1, yn+1) ≤ ρ(xn+1, T(xn)) + ρ(xn, yn) ≤
n+1

∑
i=n0+1

ρ(xi, T(xi−1)).

It follows from (2) and (6)–(8) that

xn+1 ≥ T(xn) ≥ T(yn) = yn+1.

Thus, (8) and (9) hold for n + 1 too. Thus, the assumption made for n holds for n + 1 too.
This completes the proof of Lemma 1.

4. Proofs of Theorems 2–4

Proof of Theorem 2. Given ε > 0, there exists a natural number n0, such that

∞

∑
i=n0

ρ(xi, T(xi−1)) < ε/2. (12)

Set
yn0 = xn0

and
yi+1 = T(yi)for each integeri ≥ n0. (13)

Lemma 1 and relations (12) and (13) imply that for every natural number n > n0, we have

ρ(xn, yn) ≤ ε/2. (14)
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In view of (13), there exists
y∗ = lim

n→∞
yn. (15)

By (14) and (15), for all sufficiently large natural numbers n,

ρ(xn, y∗) ≤ ρ(xn, yn) + ρ(yn, y∗) ≤ ε.

Thus {xn}∞
n=0 is a Cauchy sequence and there exists

x∗ = lim
n→∞

xn.

Clearly, if T is continuous, then x∗ is a fixed point of T. Theorem 2 is proved.

Proof of Theorem 3. Given a positive number ε, there exists a natural number n0, such
that Equation (12) holds. Define a sequence {yi}∞

i=n0
by (13). Lemma 1 and relations (12)

and (13) imply that for every natural number n > n0, we have

ρ(xn, yn) ≤ ε/2.

In view of (13) and the above inequality, for every sufficiently large natural number n, we
have

ρ(xn, F) ≤ ρ(xn, yn) + ρ(yn, F) < ε.

This completes the proof of Theorem 3.

Proof of Theorem 4. Given ε > 0, there exists a natural number n0 such that Equation (12)
holds. Define a sequence {yi}∞

i=n0
by (13). Lemma 1 and relations (12) and (13) imply that

for every natural number n > n0, we have

ρ(xn, yn) ≤ ε/2.

In view of (13), there exists a compact set E0 ⊂ X, such that

lim
n→∞

ρ(yn, E0) = 0.

Clearly, for every sufficiently large natural number n > n0, we have

ρ(xn, E0) ≤ ρ(xn, yn) + ρ(yn, E0) < ε.

Thus, we have shown that there exists a compact set E, such that

ρ(xn, E0) < ε

for each sufficiently large natural number n > n0. We may assume that E0 is finite. This
implies that each subsequence of {xi}∞

i=0 has a convergent subsequence. Denote by E the
set of all limit points of the sequence {xi}∞

i=0. It is not difficult to see that E is compact
and that

lim
i→∞

ρ(xi, E) = 0.

This completes the proof of Theorem 4.

5. Conclusions

We have extended the convergence result of [3], which was established for inexact
iterates of a nonexpansive self-mapping of a complete metric space, to monotone non-
expansive mappings. Such mappings have applications to solving matrix and ordinary
differential equations (see [21,22]).
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