A Brief Overview and Survey of the Scientific Work by Feng Qi
Abstract
:1. Introduction
2. Concrete Contributions
2.1. Bell Numbers and Inequalities
- 1.
- Let and be two non-increasing tuples of non-negative integers such that for and . Then
- 2.
- If and , then we have
- 3.
- If , , , and , then we have
- 4.
- If and , then we have
2.2. Partial Bell Polynomials
- 1.
- (a)
- For and , the function , whose value at is defined to be 1, has Maclaurin’s series expansion
- (b)
- For and with , we haveFor such that , we have
- 2.
- 3.
- 4.
- Qi showed that,
- (a)
- when , the series expansions
- (b)
- when , the series expansion (8) is convergent in ;
2.3. Wallis Ratio
2.4. Additivity of Polygamma Functions
2.5. Bounds for Mathematical Means in Terms of Mathematical Means
2.6. Complete Elliptic Integrals
2.7. Matrices
- 1.
- Suppose that are Hermitian complex matrices of format , that B is positive definite, that , and that the positive integers satisfy .
- (a)
- If , then
- (b)
- If , then
- 2.
- Suppose that are Hermitian complex matrices of format , that B is positive definite, and that . Then we have
2.8. Bounds for Ratio of Bernoulli Numbers
2.9. Special Polynomials
2.10. Complete Monotonicity Properties Related to Polygamma Functions
2.11. Convex Functions and Inequalities
- 1.
- If , the function is differentiable, and the derivative is convex on , then we have
- 2.
- For , if the function is m-convex for and the Lebesgue integrable, then we have
- 3.
- For and , if the function is -convex and differentiable and its first derivative is the Lebesgue integrable, then we have
2.12. Fractional Derivatives and Integrals
2.13. Differential Geometry
2.14. Pólya Type Integral Inequalities
2.15. Properties of Special Mathematical Means
- 1.
- Let be not less than 2 and be a positive sequence, that is, for . The arithmetic and geometric means and of the positive sequence are defined, respectively, asFor and , let andIn (Theorem 1.1 [176]), by virtue of the Cauchy integral formula in the theory of complex functions, the following integral representation was established.Let be a permutation of the sequence such that the sequence is a rearrangement of in an ascending order . Then the principal branch of the geometric mean has the integral representationfor .Taking in the integral representation (12) yields the fundamental inequalityThese texts are excerpted from the site https://math.stackexchange.com/a/4256320/945479 accessed on 10 July 2022.
- 2.
- The weighted version of the integral representation (12) can be found in the paper (Theorem 3.1 [175]). We recite the weighted version as follows.For , , and with and , the weighted arithmetic and geometric means and of with the positive weight are defined, respectively, asLet us denote . For a complex variable , we introduce the complex functionWith the aid of the Cauchy integral formula in the theory of complex functions, the following integral representation was established in (Theorem 3.1 [175]).Let for and . Then the principal branch of the weighted geometric mean with a positive weight has the integral representationLetting in the integral representation (14) gives the fundamental inequalitySetting in (15) leads to
- 3.
- For and with and , the principal branch of the reciprocal of the weighted geometric mean can be represented by
2.16. Invited Visits and Promotions
2.17. Editorial and Refereeing Appointments
- 1.
- Advances in Inequalities and Applications (since 2012);
- 2.
- Advances in Nonlinear Variational Inequalities (since 1998);
- 3.
- Journal of Inequalities and Special Functions (since 2010);
- 4.
- Journal of Inequalities in Pure and Applied Mathematics (since 2000 to 2009);
- 5.
- Journal of Mathematical Inequalities (since 2007);
- 6.
- Mathematical Inequalities and Applications (since 1998);
- 7.
- Turkish Journal of Inequalities (since 2017).
3. Statistics of Qi’s Contributions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, F. Some inequalities for the Bell numbers. Proc. Indian Acad. Sci. Math. Sci. 2017, 127, 551–564. [Google Scholar] [CrossRef]
- Qi, F. Integral representations for multivariate logarithmic polynomials. J. Comput. Appl. Math. 2018, 336, 54–62. [Google Scholar] [CrossRef]
- Qi, F. On multivariate logarithmic polynomials and their properties. Indag. Math. 2018, 29, 1179–1192. [Google Scholar] [CrossRef]
- Qi, F. Some inequalities and an application of exponential polynomials. Math. Inequal. Appl. 2020, 23, 123–135. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Lim, D.; Guo, B.-N. Some properties and an application of multivariate exponential polynomials. Math. Methods Appl. Sci. 2020, 43, 2967–2983. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Lim, D.; Yao, Y.-H. Special values of the Bell polynomials of the second kind for some sequences and functions. J. Math. Anal. Appl. 2020, 491, 124382. [Google Scholar] [CrossRef]
- Guo, B.-N.; Lim, D.; Qi, F. Maclaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function. Appl. Anal. Discrete Math. 2023, 17. in press. [Google Scholar] [CrossRef]
- Guo, B.-N.; Lim, D.; Qi, F. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021, 6, 7494–7517. [Google Scholar] [CrossRef]
- Qi, F. Taylor’s series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi. Demonstr. Math. 2022, 55. in press. [Google Scholar]
- Qi, F. Explicit formulas for partial Bell polynomials, Maclaurin’s series expansions of real powers of inverse (hyperbolic) cosine and sine, and series representations of powers of Pi. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Qi, F.; Taylor, P. Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind. arXiv 2022, arXiv:2204.05612v4. [Google Scholar]
- Qi, F.; Guo, B.-N. Relations among Bell polynomials, central factorial numbers, and central Bell polynomials. Math. Sci. Appl. E-Notes 2019, 7, 191–194. [Google Scholar] [CrossRef]
- Qi, F.; Wu, G.-S.; Guo, B.-N. An alternative proof of a closed formula for central factorial numbers of the second kind. Turkish J. Anal. Number Theory 2019, 7, 56–58. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. Viewing some ordinary differential equations from the angle of derivative polynomials. Iran. J. Math. Sci. Inform. 2021, 16, 77–95. [Google Scholar] [CrossRef]
- Jin, S.; Guo, B.-N.; Qi, F. Partial Bell polynomials, falling and rising factorials, Stirling numbers, and combinatorial identities. CMES Comput. Model. Eng. Sci. 2022, 132, 781–799. [Google Scholar] [CrossRef]
- Qi, F. Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Laguerre polynomials. Appl. Appl. Math. 2018, 13, 750–755. [Google Scholar]
- Qi, F.; Guo, B.-N. Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials. Mediterr. J. Math. 2017, 14, 140. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D. Closed formulas for special Bell polynomials by Stirling numbers and associate Stirling numbers. Publ. Inst. Math. (Beograd) (N.S.) 2020, 108, 131–136. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 1–9. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Yao, Y.-H. Notes on two kinds of special values for the Bell polynomials of the second kind. Miskolc Math. Notes 2019, 20, 465–474. [Google Scholar] [CrossRef]
- Qi, F.; Natalini, P.; Ricci, P.E. Recurrences of Stirling and Lah numbers via second kind Bell polynomials. Discrete Math. Lett. 2020, 3, 31–36. [Google Scholar]
- Qi, F.; Niu, D.-W.; Lim, D.; Guo, B.-N. Closed formulas and identities for the Bell polynomials and falling factorials. Contrib. Discrete Math. 2020, 15, 163–174. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Kruchinin, D.V. Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. 2017, 7, 857–871. [Google Scholar] [CrossRef]
- Qi, F.; Wan, A. A closed-form expression of a remarkable sequence of polynomials originating from a family of entire functions connecting the Bessel and Lambert functions. São Paulo J. Math. Sci. 2021, 15. in press. [Google Scholar] [CrossRef]
- Qi, F.; Zheng, M.-M. Explicit expressions for a family of the Bell polynomials and applications. Appl. Math. Comput. 2015, 258, 597–607. [Google Scholar] [CrossRef]
- Qi, F.; Mortici, C. Some best approximation formulas and inequalities for the Wallis ratio. Appl. Math. Comput. 2015, 253, 363–368. [Google Scholar] [CrossRef]
- Cao, J.; Niu, D.-W.; Qi, F. A Wallis type inequality and a double inequality for probability integral. Aust. J. Math. Anal. Appl. 2007, 4, 3. Available online: http://ajmaa.org/cgi-bin/paper.pl?string=v4n1/V4I1P3.tex (accessed on 10 July 2022).
- Chen, C.-P.; Qi, F. Best upper and lower bounds in Wallis’ inequality. J. Indones. Math. Soc. (MIHMI) 2005, 11, 137–141. [Google Scholar]
- Chen, C.-P.; Qi, F. Completely monotonic function associated with the gamma function and proof of Wallis’ inequality. Tamkang J. Math. 2005, 36, 303–307. [Google Scholar] [CrossRef]
- Chen, C.-P.; Qi, F. The best bounds in Wallis’ inequality. Proc. Am. Math. Soc. 2005, 133, 397–401. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. On the Wallis formula. Internat. J. Anal. Appl. 2015, 8, 30–38. [Google Scholar]
- Guo, S.; Xu, J.-G.; Qi, F. Some exact constants for the approximation of the quantity in the Wallis’ formula. J. Inequal. Appl. 2013, 2013, 7. [Google Scholar] [CrossRef]
- Qi, F. An improper integral, the beta function, the Wallis ratio, and the Catalan numbers. Probl. Anal. Issues Anal. 2018, 7, 104–115. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F.; Luo, Q.-M. The additivity of polygamma functions. Filomat 2015, 29, 1063–1066. [Google Scholar] [CrossRef]
- Cao, J.; Niu, D.-W.; Qi, F. Convexities of some functions involving the polygamma functions. Appl. Math. E-Notes 2008, 8, 53–57. [Google Scholar]
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Yang, Z.-H. A double inequality for an integral mean in terms of the exponential and logarithmic means. Period. Math. Hungar. 2017, 75, 180–189. [Google Scholar] [CrossRef]
- Bullen, P.S. Handbook of Means and Their Inequalities; Mathematics and Its Application; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2003; Volume 560. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Lévy–Khintchine representation of Toader–Qi mean. Math. Inequal. Appl. 2018, 21, 421–431. [Google Scholar] [CrossRef]
- Qi, F.; Yao, S.-W.; Guo, B.-N. Arithmetic means for a class of functions and the modified Bessel functions of the first kind. Mathematics 2019, 7, 60. [Google Scholar] [CrossRef]
- Qian, W.-M.; Zhang, W.; Chu, Y.-M. Optimal bounds for Toader–Qi mean with applications. J. Comput. Anal. Appl. 2020, 28, 526–536. [Google Scholar]
- Qian, W.-M.; Zhang, X.-H.; Chu, Y.-M. Sharp bounds for the Toader–Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 2017, 11, 121–127. [Google Scholar] [CrossRef]
- Xu, H.Z.; Qian, W.M. Some sharp bounds for Toader–Qi mean and other bivariate means. J. Zhejiang Univ. Sci. Ed. (Zhejiang Daxue Xuebao, Lixue Ban) 2017, 44, 526–530. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. A sharp lower bound for Toader–Qi mean with applications. J. Funct. Spaces 2016, 2016, 4165601. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. On approximating the modified Bessel function of the first kind and Toader–Qi mean. J. Inequal. Appl. 2016, 2016, 21. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M.; Song, Y.-Q. Sharp bounds for Toader–Qi mean in terms of logarithmic and identric means. Math. Inequal. Appl. 2016, 19, 721–730. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. A new chain of inequalities involving the Toader–Qi, logarithmic and exponential means. Appl. Anal. Discrete Math. 2021, 15, 467–485. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F.; Zhu, Y.-R. New sharp bounds for the modified Bessel function of the first kind and Toader–Qi mean. Mathematics 2020, 8, 901. [Google Scholar] [CrossRef]
- Zhu, L. New bounds for the modified Bessel function of the first kind and Toader–Qi mean. Mathematics 2021, 9, 2867. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Qi, F. A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean. Publ. Inst. Math. (Beograd) (N.S.) 2016, 99, 237–242. [Google Scholar] [CrossRef]
- Hua, Y.; Qi, F. A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 2014, 124, 527–531. [Google Scholar] [CrossRef]
- Hua, Y.; Qi, F. The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 2014, 28, 775–780. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Qi, F. Sharp bounds for the Neuman—Sándor mean in terms of the power and contraharmonic means. Cogent Math. 2015, 2, 7. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Qi, F. Sharp bounds for Neuman—Sándor’s mean in terms of the root-mean-square. Period. Math. Hungar. 2014, 69, 134–138. [Google Scholar] [CrossRef]
- Li, W.-H.; Miao, P.; Guo, B.-N. Bounds for the Neuman–-Sándor mean in terms of the arithmetic and contra-harmonic means. Axioms 2022, 11, 236. [Google Scholar] [CrossRef]
- Li, W.-H.; Shen, Q.-X.; Guo, B.-N. Several double inequalities for integer powers of the sinc and sinhc functions with applications to the Neuman–Sándor mean and the first Seiffert mean. Axioms 2022, 11, 304. [Google Scholar] [CrossRef]
- Qi, F.; Li, W.-H. A unified proof of inequalities and some new inequalities involving Neuman–Sándor mean. Miskolc Math. Notes 2014, 15, 665–675. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. Some bounds for the complete elliptic integrals of the first and second kind. Math. Inequal. Appl. 2011, 14, 323–334. [Google Scholar] [CrossRef]
- Qi, F.; Huang, Z. Inequalities of the complete elliptic integrals. Tamkang J. Math. 1998, 29, 165–169. [Google Scholar] [CrossRef]
- Wang, F.; Guo, B.-N.; Qi, F. Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Math. 2020, 5, 2732–2742. [Google Scholar] [CrossRef]
- Wang, F.; Qi, F. Monotonicity and sharp inequalities related to complete (p,q)-elliptic integrals of the first kind. C. R. Math. Acad. Sci. Paris 2020, 358, 961–970. [Google Scholar] [CrossRef]
- Yin, L.; Lin, X.-L.; Qi, F. Monotonicity, convexity and inequalities related to complete (p,q,r)-elliptic integrals and generalized trigonometric functions. Publ. Math. Debrecen 2020, 97, 181–199. [Google Scholar] [CrossRef]
- Yin, L.; Qi, F. Some inequalities for complete elliptic integrals. Appl. Math. E-Notes 2014, 14, 192–199. [Google Scholar]
- Qi, F.; Zou, Q.; Guo, B.-N. The inverse of a triangular matrix and several identities of the Catalan numbers. Appl. Anal. Discrete Math. 2019, 13, 518–541. [Google Scholar] [CrossRef]
- Beck, G.; Dilcher, K. A matrix related to Stern polynomials and the Prouhet–Thue–Morse sequence. Integers 2022, 22, 30. [Google Scholar]
- Chu, W. Further identities on Catalan numbers. Discrete Math. 2018, 341, 3159–3164. [Google Scholar] [CrossRef]
- Li, W.-H.; Cao, J.; Niu, D.-W.; Zhao, J.-L.; Qi, F. An analytic generalization of the Catalan numbers and its integral representation. arXiv 2005, arXiv:2005.13515v2. [Google Scholar]
- Qi, F.; Cerone, P. Some properties of the Fuss–Catalan numbers. Mathematics 2018, 6, 277. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Cerone, P. A unified generalization of the Catalan, Fuss, and Fuss–Catalan numbers. Math. Comput. Appl. 2019, 24, 49. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F. An integral representation, complete monotonicity, and inequalities of the Catalan numbers. Filomat 2018, 32, 575–587. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Integral representations of the Catalan numbers and their applications. Mathematics 2017, 5, 40. [Google Scholar] [CrossRef]
- Hong, Y.; Lim, D.; Qi, F. Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices. J. Inequal. Appl. 2018, 2018, 6. [Google Scholar] [CrossRef]
- Hong, Y.; Qi, F. Determinantal inequalities of Hua-Marcus-Zhang type for quaternion matrices. Open Math. 2021, 19, 562–568. [Google Scholar] [CrossRef]
- Hong, Y.; Qi, F. Refinements of two determinantal inequalities for positive semidefinite matrices. Math. Inequal. Appl. 2022, 25, 673–678. [Google Scholar] [CrossRef]
- Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
- Qi, F. Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers. Turkish J. Anal. Number Theory 2018, 6, 129–131. [Google Scholar] [CrossRef]
- Shuang, Y.; Guo, B.-N.; Qi, F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 12. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Banjac, B.; Chesneau, C.; Kostić, M.; Malešević, B. New refinements of Cusa–Huygens inequality. Results Math. 2021, 76, 16. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Chesneau, C.; Kostić, M. The Cusa-Huygens inequality revisited. Novi Sad J. Math. 2020, 50, 149–159. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Kostić, M.; Chesneau, C.; Dhaigude, R.M. On the generalized Becker-Stark type inequalities. Acta Univ. Sapientiae Math. 2021, 13, 88–104. [Google Scholar] [CrossRef]
- Bouali, M. Double inequalities for complete monotonicity degrees of remainders of asymptotic expansions of the gamma and digamma functions. arXiv 2022, arXiv:2202.01801v1. [Google Scholar]
- Chen, X.-D.; Wang, H.; Yu, J.; Cheng, Z.; Zhu, P. New bounds of Sinc function by using a family of exponential functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2022, 116, 17. [Google Scholar] [CrossRef]
- Chouchi, B.; Fedorov, V.; Kostić, M. Monotonicity of certain classes of functions related with Cusa–Huygens inequality. Chelyab. Fiz.-Mat. Zh. (Chelyabinsk Phys. Math. J.) 2021, 6, 331–337. [Google Scholar]
- Englert, C.; Giudice, G.F.; Greljo, A.; McCullough, M. The H^-parameter: An oblique Higgs view. J. High Energy Phys. 2019, 28. [Google Scholar] [CrossRef]
- Kostić, M.; Pilipović, S.; Velinov, D.; Fedorov, V.E. c-almost periodic type distributions. Chelyab. Fiz.-Mat. Zh. (Chelyabinsk Phys. Math. J.) 2021, 6, 190–207. [Google Scholar] [CrossRef]
- Liu, J.-C. On two supercongruences for sums of Apéry-like numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 7. [Google Scholar] [CrossRef]
- Tan, S.-Y.; Huang, T.-R.; Chu, Y.-M. Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind. Math. Slovaca 2021, 71, 667–682. [Google Scholar] [CrossRef]
- Volkov, Y.S. Efficient computation of Favard constants and their connection to Euler polynomials and numbers. Sib. Èlektron. Mat. Izv. (Sib. Electron. Math. Rep.) 2020, 17, 1921–1942. [Google Scholar] [CrossRef]
- Xu, A.-M.; Cen, Z.-D. Qi’s conjectures on completely monotonic degrees of remainders of asymptotic formulas of di- and tri-gamma functions. J. Inequal. Appl. 2020, 10. [Google Scholar] [CrossRef]
- Yang, Z.-H. Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 2016, 441, 549–564. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364, 112359. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Zhu, L. New bounds for arithmetic mean by the Seiffert-like means. Mathematics 2022, 10, 14. [Google Scholar] [CrossRef]
- Li, Y.-W.; Dağlı, M.C.; Qi, F. Two explicit formulas for degenerate Peters numbers and polynomials. Discrete Math. Lett. 2022, 8, 1–5. [Google Scholar] [CrossRef]
- Guo, B.-N.; Polatlı, E.; Qi, F. Determinantal Formulas and Recurrent Relations for Bi-Periodic Fibonacci and Lucas Polynomials; Chapter 18 in the Springer Proceedings of the International Conference on Advances in Mathematics and Computing (ICAMC-2020) organized by Veer Surendra Sai University of Technology, Odisha, India, during 7–8 February 2020; Paikray, S.K., Dutta, H., Mordeson, J.N., Eds.; New Trends in Applied Analysis and Computational Mathematics; Springer Book Series; Advances in Intelligent Systems and Computing; Springer: Singapore, 2021; Volume 1356. [Google Scholar] [CrossRef]
- Kızılateş, C.; Du, W.-S.; Qi, F. Several determinantal expressions of generalized Tribonacci polynomials and sequences. Tamkang J. Math. 2022, 53. in press. [Google Scholar] [CrossRef]
- Qi, F. Determinantal expressions and recurrence relations for Fubini and Eulerian polynomials. J. Interdiscip. Math. 2019, 22, 317–335. [Google Scholar] [CrossRef]
- Qi, F. Determinantal expressions and recursive relations of Delannoy polynomials and generalized Fibonacci polynomials. J. Nonlinear Convex Anal. 2021, 22, 1225–1239. [Google Scholar]
- Qi, F. Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials. Bol. Soc. Paran. Mat. 2021, 39, 73–82. [Google Scholar] [CrossRef]
- Qi, F.; Čerňanová, V.; Semenov, Y.S. Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81, 123–136. [Google Scholar]
- Qi, F.; Chapman, R.J. Two closed forms for the Bernoulli polynomials. J. Number Theory 2016, 159, 89–100. [Google Scholar] [CrossRef]
- Qi, F.; Dağlı, M.C.; Du, W.-S. Determinantal forms and recursive relations of the Delannoy two-functional sequence. Adv. Theory Nonlinear Anal. Appl. 2020, 4, 184–193. [Google Scholar] [CrossRef]
- Qi, F.; Dağlı, M.C.; Lim, D. Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers. Open Math. 2021, 19, 833–849. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbilisi Math. J. 2017, 10, 153–158. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A determinantal expression and a recurrence relation for the Euler polynomials. Adv. Appl. Math. Sci. 2017, 16, 297–309. [Google Scholar]
- Qi, F.; Guo, B.-N. Explicit formulas and recurrence relations for higher order Eulerian polynomials. Indag. Math. 2017, 28, 884–891. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant. Matematiche (Catania) 2017, 72, 167–175. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Some determinantal expressions and recurrence relations of the Bernoulli polynomials. Mathematics 2016, 4, 65. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Some properties of the Hermite polynomials. Georgian Math. J. 2022, 28, 925–935. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Two nice determinantal expressions and a recurrence relation for the Apostol–Bernoulli polynomials. J. Indones. Math. Soc. (MIHMI) 2017, 23, 81–87. [Google Scholar] [CrossRef]
- Qi, F.; Kızılateş, C.; Du, W.-S. A closed formula for the Horadam polynomials in terms of a tridiagonal determinant. Symmetry 2019, 11, 8. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Some identities related to Eulerian polynomials and involving the Stirling numbers. Appl. Anal. Discrete Math. 2018, 12, 467–480. [Google Scholar] [CrossRef]
- Wang, Y.; Dağlı, M.C.; Liu, X.-M.; Qi, F. Explicit, determinantal, and recurrent formulas of generalized Eulerian polynomials. Axioms 2021, 10, 37. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.-Y.; Dağlı, M.C.; Qi, F. On degenerate array type polynomials. CMES Comput. Model. Eng. Sci. 2022, 131, 295–305. [Google Scholar] [CrossRef]
- Zhao, J.-L.; Wang, J.-L.; Qi, F. Derivative polynomials of a function related to the Apostol–Euler and Frobenius–Euler numbers. J. Nonlinear Sci. Appl. 2017, 10, 1345–1349. [Google Scholar] [CrossRef]
- Qi, F. Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions defined by two derivatives of a function involving trigamma function. Appl. Anal. Discrete Math. 2021, 15, 378–392. [Google Scholar] [CrossRef]
- Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. 2019, 36. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D. Monotonicity properties for a ratio of finite many gamma functions. Adv. Differ. Equ. 2020, 193. [Google Scholar] [CrossRef] [PubMed]
- Qi, F. Alternative proofs for monotonicity of some functions related to sectional curvature of Fisher–Rao manifold of beta distributions. In Applied Nonlinear Analysis and Soft Computing: Proceedings of ANASC 2020, Guwahati, India, 22–23 December 2020; Advance in Intelligent Systems and Computing; Springer: Singapore, 2022; in press. [Google Scholar]
- Qi, F. Decreasing properties of two ratios defined by three and four polygamma functions. C. R. Math. Acad. Sci. Paris 2022, 360, 89–101. [Google Scholar] [CrossRef]
- Qi, F. Decreasing property and complete monotonicity of two functions constituted via three derivatives of a function involving trigamma function. Math. Slovaca 2022, 72. in press. [Google Scholar] [CrossRef]
- Qi, F. Lower bound of sectional curvature of Fisher–Rao manifold of beta distributions and complete monotonicity of functions involving polygamma functions. Results Math. 2021, 76, 217. [Google Scholar] [CrossRef]
- Qi, F. Necessary and sufficient conditions for a difference constituted by four derivatives of a function involving trigamma function to be completely monotonic. Math. Inequal. Appl. 2021, 24, 845–855. [Google Scholar] [CrossRef]
- Qi, F. Necessary and sufficient conditions for a difference defined by four derivatives of a function containing trigamma function to be completely monotonic. Appl. Comput. Math. 2022, 21, 61–70. [Google Scholar] [CrossRef]
- Qi, F. Necessary and sufficient conditions for a ratio involving trigamma and tetragamma functions to be monotonic. Turkish J. Inequal. 2021, 5, 50–59. [Google Scholar]
- Qi, F. Some properties of several functions involving polygamma functions and originating from the sectional curvature of the beta manifold. São Paulo J. Math. Sci. 2020, 14, 614–630. [Google Scholar] [CrossRef]
- Qi, F. Two monotonic functions defined by two derivatives of a function involving trigamma function. TWMS J. Pure Appl. Math. 2022, 13, 91–104. [Google Scholar]
- Brigant, A.L.; Preston, S.C.; Puechmorel, S. Fisher–Rao geometry of Dirichlet distributions. Differ. Geom. Appl. 2021, 74, 16. [Google Scholar] [CrossRef]
- Bai, Y.-M.; Qi, F. Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates. J. Nonlinear Sci. Appl. 2016, 9, 5900–5908. [Google Scholar] [CrossRef]
- Bai, S.-P.; Wang, S.-H.; Qi, F. On HT-convexity and Hadamard-type inequalities. J. Inequal. Appl. 2020, 1–12. [Google Scholar] [CrossRef]
- Hua, J.; Xi, B.-Y.; Qi, F. Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 2015, 26, 741–752. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, T.-Y.; Xi, B.-Y. Hermite–Hadamard-type integral inequalities for functions whose first derivatives are convex. Ukrainian Math. J. 2015, 67, 625–640. [Google Scholar] [CrossRef]
- Shuang, Y.; Qi, F. Integral inequalities of the Hermite–Hadamard type for (α,m)-GA-convex functions. J. Nonlinear Sci. Appl. 2017, 10, 1854–1860. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, M.-M.; Qi, F. Integral inequalities of Hermite–Hadamard type for functions whose derivatives are (α,m)-preinvex. J. Inequal. Appl. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, F. Discussions on two integral inequalities of Hermite–Hadamard type for convex functions. J. Comput. Appl. Math. 2022, 406, 6. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, F.; Pei, Z.-L.; Bai, S.-P. Hermite–Hadamard type integral inequalities via (s,m)-P-convexity on co-ordinates. J. Nonlinear Sci. Appl. 2016, 9, 876–884. [Google Scholar] [CrossRef]
- Xi, B.-Y.; Bai, S.-P.; Qi, F. On integral inequalities of the Hermite–Hadamard type for co-ordinated (α,m1)-(s,m2)-convex functions. J. Interdiscip. Math. 2018, 21, 1505–1518. [Google Scholar] [CrossRef]
- Xi, B.-Y.; Gao, D.-D.; Qi, F. Integral inequalities of Hermite–Hadamard type for (α,s)-convex and (α,s,m)-convex functions. Ital. J. Pure Appl. Math. 2020, 44, 499–510. [Google Scholar]
- Xi, B.-Y.; Qi, F. Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means. J. Nonlinear Convex Anal. 2015, 16, 873–890. [Google Scholar]
- Xi, B.-Y.; Qi, F. Properties and inequalities for the (h1,h2)- and (h1,h2,m)-GA-convex functions. Cogent Math. 2016, 3, 1176620. [Google Scholar] [CrossRef]
- Xi, B.-Y.; Qi, F. Some inequalities of Hermite–Hadamard type for geometrically P-convex functions. Adv. Stud. Contemp. Math. (Kyungshang) 2016, 26, 211–220. [Google Scholar]
- Huang, C.-J.; Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some inequalities of the Hermite–Hadamard type for k-fractional conformable integrals. Austral. J. Math. Anal. Appl. 2019, 16, 7. Available online: http://ajmaa.org/cgi-bin/paper.pl?string=v16n1/V16I1P7.tex (accessed on 10 July 2022).
- Qi, F.; Rahman, G.; Hussain, S.M.; Du, W.-S.; Nisar, K.S. Some inequalities of Čebyšev type for conformable k-fractional integral operators. Symmetry 2018, 10, 614. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some inequalities of the Grüss type for conformable k-fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 9. [Google Scholar] [CrossRef]
- Hoorfar, A.; Qi, F. A new refinement of Young’s inequality. Math. Inequal. Appl. 2008, 11, 689–692. [Google Scholar] [CrossRef]
- Qi, F.; Li, W.-H.; Wu, G.-S.; Guo, B.-N. Refinements of Young’s integral inequality via fundamental inequalities and mean value theorems for derivatives. In Topics in Contemporary Mathematical Analysis and Applications; Dutt, H., Ed.; CRC Press: Boca Raton, FL, USA, 2021; Chapter 8; pp. 193–227. [Google Scholar] [CrossRef]
- Qi, F.; Wan, A. Geometric interpretations and reversed versions of Young’s integral inequality. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Guo, B.-N.; Qi, F. Generalizations and applications of Young’s integral inequality by higher order derivatives. J. Inequal. Appl. 2019, 18. [Google Scholar] [CrossRef]
- Mei, J.-Q.; Xu, S.-L.; Qi, F. Curvature pinching for minimal submanifolds in unit spheres. Math. Appl. (Wuhan) 1999, 12, 5–10. [Google Scholar]
- Qi, F.; Guo, B.-N. Lower bound of the first eigenvalue for the Laplace operator on compact Riemannian manifold. Chinese Quart. J. Math. 1993, 8, 40–49. [Google Scholar]
- Qi, F.; Yu, L.-Q.; Luo, Q.-M. Estimates for the upper bounds of the first eigenvalue on submanifolds. Chin. Quart. Math. 1994, 9, 40–43. [Google Scholar]
- Qi, F.; Zheng, M.-M. Absolute monotonicity of functions related to estimates of first eigenvalue of Laplace operator on Riemannian manifolds. Int. J. Anal. Appl. 2014, 6, 123–131. [Google Scholar]
- Xu, S.-L.; Huang, Z.; Qi, F. A rigidity theorem for manifold with a nice submanifold. Math. Appl. (Wuhan) 1999, 12, 72–75. [Google Scholar]
- Pólya, G. Ein mittelwertsatz für Funktionen mehrerer Veränderlichen. Tôhoku Math. J. 1921, 19, 1–3. [Google Scholar]
- Qi, F. Inequalities for an integral. Math. Gaz. 1996, 80, 376–377. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, H.-T.; Qi, F. Some inequalities for multiple integrals on the n-dimensional ellipsoid, spherical shell, and ball. Abstr. Appl. Anal. 2013, 2013, 904721. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. Estimates for An Integral in Lp Norm of the (n+1)-th Derivative of Its Integrand, Inequality Theory and Applications; Cho, Y.J., Kim, J.K., Dragomir, S.S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2003; Volume 3, pp. 127–131. [Google Scholar]
- Guo, B.-N.; Qi, F. Proofs of an integral inequality. Math. Informatics Q. 1997, 7, 182–184. [Google Scholar]
- Guo, B.-N.; Qi, F. Some estimates of an integral in terms of the Lp-norm of the (n+1)st derivative of its integrand. Anal. Math. 2003, 29, 1–6. [Google Scholar] [CrossRef]
- Qi, F. Further generalizations of inequalities for an integral. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 1997, 8, 79–83. Available online: https://www.jstor.org/stable/i40147167 (accessed on 10 July 2022).
- Qi, F. Inequalities for a multiple integral. Acta Math. Hungar. 1999, 84, 19–26. [Google Scholar] [CrossRef]
- Qi, F. Inequalities for a weighted multiple integral. J. Math. Anal. Appl. 2001, 253, 381–388. [Google Scholar] [CrossRef]
- Qi, F.; Cerone, P.; Dragomir, S.S. Some new Iyengar type inequalities. Rocky Mountain J. Math. 2005, 35, 997–1015. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, Y.-J. Inequalities for a weighted integral. Adv. Stud. Contemp. Math. (Kyungshang) 2002, 4, 93–101. [Google Scholar]
- Qi, F. Pólya type integral inequalities: Origin, variants, proofs, refinements, generalizations, equivalences, and applications. Math. Inequal. Appl. 2015, 18, 1–38. [Google Scholar] [CrossRef]
- Qi, F.; Luo, Q.-M. Refinements and extensions of an inequality. Math. Inform. Q. 1999, 9, 23–25. [Google Scholar]
- Qi, F.; Xu, S.-L. Refinements and extensions of an inequality, II. J. Math. Anal. Appl. 1997, 211, 616–620. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. On the degree of the weighted geometric mean as a complete Bernstein function. Afr. Mat. 2015, 26, 1253–1262. [Google Scholar] [CrossRef]
- Qi, F. Bounding the difference and ratio between the weighted arithmetic and geometric means. Int. J. Anal. Appl. 2017, 13, 132–135. [Google Scholar]
- Qi, F.; Chen, S.-X. Complete monotonicity of the logarithmic mean. Math. Inequal. Appl. 2007, 10, 799–804. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. The reciprocal of the geometric mean of many positive numbers is a Stieltjes transform. J. Comput. Appl. Math. 2017, 311, 165–170. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. The reciprocal of the weighted geometric mean is a Stieltjes function. Bol. Soc. Mat. Mex. (3) 2018, 24, 181–202. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. The reciprocal of the weighted geometric mean of many positive numbers is a Stieltjes function. Quaest. Math. 2018, 41, 653–664. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D. Integral representations of bivariate complex geometric mean and their applications. J. Comput. Appl. Math. 2018, 330, 41–58. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, X.-J.; Li, W.-H. An elementary proof of the weighted geometric mean being a Bernstein function. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 35–38. [Google Scholar]
- Qi, F.; Zhang, X.-J.; Li, W.-H. An integral representation for the weighted geometric mean and its applications. Acta Math. Sin. (Engl. Ser.) 2014, 30, 61–68. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, X.-J.; Li, W.-H. Lévy–Khintchine representation of the geometric mean of many positive numbers and applications. Math. Inequal. Appl. 2014, 17, 719–729. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, X.-J.; Li, W.-H. Lévy–Khintchine representations of the weighted geometric mean and the logarithmic mean. Mediterr. J. Math. 2014, 11, 315–327. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, X.-J.; Li, W.-H. The harmonic and geometric means are Bernstein functions. Bol. Soc. Mat. Mex. (3) 2017, 23, 713–736. [Google Scholar] [CrossRef]
- Aljinović, A.A.; Pečarić, J. Note on an integral inequality similar to Qi’s inequality. Math. Maced. 2009, 7, 1–7. [Google Scholar]
- Chammam, W. Catalan–Qi numbers, series involving the Catalan–Qi numbers and a Hankel determinant evaluation. J. Math. 2020, 8101725. [Google Scholar] [CrossRef]
- Corcino, R.B.; Vega, M.A.R.P.; Dibagulun, A.M. A (p,q)-analogue of Qi-type formula for r-Dowling numbers. J. Math. Computer Sci. 2022, 24, 273–286. [Google Scholar] [CrossRef]
- Mao, Z.-X.; Zhu, Y.-R.; Guo, B.-H.; Wang, F.-H.; Yang, Y.-H.; Zhao, H.-Q. Qi type diamond-alpha integral inequalities. Mathematics 2021, 9, 24. [Google Scholar] [CrossRef]
- Nemes, G. A solution to an open problem on Mathieu series posed by Hoorfar and Qi. Acta Math. Vietnam. 2012, 37, 301–310. [Google Scholar]
- Pečarić, J.; T Pejković, T. Note on Feng Qi’s integral inequality. J. Inequal. Pure Appl. Math. 2004, 5, 51. Available online: http://www.emis.de/journals/JIPAM/article418.html (accessed on 10 July 2022).
- Pogány, T.K. On an open problem of F. Qi. J. Inequal. Pure Appl. Math. 2002, 3, 54. Available online: http://www.emis.de/journals/JIPAM/article206.html (accessed on 10 July 2022).
- Bernstein, D.S. Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas-Revised and Expanded Edition; Expanded, R.A., Ed.; Princeton University Press: Princeton, NJ, USA, 2018; Available online: https://press.princeton.edu/books/hardcover/9780691151205/scalar-vector-and-matrix-mathematics (accessed on 10 July 2022).
- Bernstein, D.S. Matrix Mathematics: Theory, Facts, and Formulas, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Bullen, P.S. Dictionary of Inequalities, 2nd ed.; Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010–2020. Available online: https://dlmf.nist.gov/ (accessed on 10 July 2022).
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010; Available online: http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521192255 (accessed on 10 July 2022).
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions. Theory and Applications, de Gruyter Studies in Mathematics; Walter de Gruyter & Co.: Berlin, Germany, 2010; Volume 37. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions: Theory and Applications, 2nd ed.; De Gruyter Studies in Mathematics; Walter de Gruyter & Co.: Berlin, Germany, 2012; Volume 37. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Res. Rep. Coll. 2004, 7, 63–72. Available online: http://rgmia.org/v7n1.php (accessed on 10 July 2022).
- Qi, F.; Guo, B.-N.; Chen, C.-P. Some completely monotonic functions involving the gamma and polygamma functions. RGMIA Res. Rep. Coll. 2004, 7, 31–36. Available online: http://rgmia.org/v7n1.php (accessed on 10 July 2022). [CrossRef]
- Qi, F.; Chen, C.-P. A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 2004, 296, 603–607. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N.; Chen, C.-P. Some completely monotonic functions involving the gamma and polygamma functions. J. Aust. Math. Soc. 2006, 80, 81–88. [Google Scholar] [CrossRef]
- Berg, C. Integral representation of some functions related to the gamma function. Mediterr. J. Math. 2004, 1, 433–439. [Google Scholar] [CrossRef]
- Guo, S.; Srivastava, H.M.; Cheung, W.-S. Some properties of functions related to certain classes of completely monotonic functions and logarithmically completely monotonic functions. Filomat 2014, 28, 821–828. [Google Scholar] [CrossRef]
- Li, A.-J.; Zhao, W.-Z.; Chen, C.-P. Logarithmically complete monotonicity properties for the ratio of gamma function. Adv. Stud. Contemp. Math. (Kyungshang) 2006, 13, 183–191. [Google Scholar]
- Mehrez, K.; Das, S. Logarithmically completely monotonic functions related to the q-gamma function and its applications. Anal. Math. Phys. 2022, 12, 20. [Google Scholar] [CrossRef]
- Tian, J.-F.; Yang, Z.-H. Logarithmically complete monotonicity of ratios of q-gamma functions. J. Math. Anal. Appl. 2022, 508, 13. [Google Scholar] [CrossRef]
- Atanassov, R.D.; Tsoukrovski, U.V. Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulgare Sci. 1988, 41, 21–23. [Google Scholar]
- Cao, J.; Niu, D.-W.; Qi, F. A refinement of Carleman’s inequality. Adv. Stud. Contemp. Math. (Kyungshang) 2006, 13, 57–62. [Google Scholar]
- Cao, J.; Niu, D.-W.; Qi, F. An extension and a refinement of van der Corput’s inequality. Internat. J. Math. Math. Sci. 2006, 70786. [Google Scholar] [CrossRef]
- Huo, Z.-H.; Niu, D.-W.; Cao, J.; Qi, F. A generalization of Jordan’s inequality and an application. Hacet. J. Math. Stat. 2011, 40, 53–61. [Google Scholar]
- Jiang, W.-D.; Cao, J.; Qi, F. Sharp inequalities for bounding Seiffert mean in terms of the arithmetic, centroidal, and contra-harmonic means. Math. Slovaca 2016, 66, 1115–1118. [Google Scholar] [CrossRef]
- Niu, D.-W.; Cao, J.; Qi, F. A class of logarithmically completely monotonic functions related to (1+1/x)x and an application. Gen. Math. 2006, 14, 97–112. [Google Scholar]
- Niu, D.-W.; Cao, J.; Qi, F. A refinement of van der Corput’s inequality. J. Inequal. Pure Appl. Math. 2006, 7, 127. Available online: http://www.emis.de/journals/JIPAM/article744.html (accessed on 10 July 2022).
- Niu, D.-W.; Cao, J.; Qi, F. Generalizations of Jordan’s inequality and concerned relations. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2010, 72, 85–98. [Google Scholar]
- Niu, D.-W.; Huo, Z.-H.; Cao, J.; Qi, F. A general refinement of Jordan’s inequality and a refinement of L. Yang’s inequality. Integral Transforms Spec. Funct. 2008, 19, 157–164. [Google Scholar] [CrossRef]
- Qi, F.; Cao, J.; Niu, D.-W. A generalization of van der Corput’s inequality. Appl. Math. Comput. 2008, 203, 770–777. [Google Scholar] [CrossRef]
- Qi, F.; Cao, J.; Niu, D.-W. More notes on a functional equation. Internat. J. Math. Ed. Sci. Tech. 2006, 37, 865–868. [Google Scholar] [CrossRef]
- Qi, F.; Cao, J.; Niu, D.-W.; Ujević, N. An upper bound of a function with two independent variables. Appl. Math. E-Notes 2006, 6, 17. [Google Scholar]
- Qi, F.; Jiang, W.-D.; Cao, J. Two double inequalities for the Seiffert mean in terms of the arithmetic, centroidal, and contra-harmonic means. Adv. Stud. Contemp. Math. (Kyungshang) 2015, 25, 547–552. [Google Scholar]
- Qi, F.; Li, A.-J.; Zhao, W.-Z.; Niu, D.-W.; Cao, J. Extensions of several integral inequalities. J. Inequal. Pure Appl. Math. 2006, 7, 107. Available online: http://www.emis.de/journals/JIPAM/article706.html (accessed on 10 July 2022).
- Qi, F.; Niu, D.-W.; Cao, J. An infimum and an upper bound of a function with two independent variables. Octogon Math. Mag. 2006, 14, 248–250. [Google Scholar]
- Qi, F.; Niu, D.-W.; Cao, J. Logarithmically completely monotonic functions involving gamma and polygamma functions. J. Math. Anal. Approx. Theory 2006, 1, 66–74. [Google Scholar]
- Qi, F.; Niu, D.-W.; Cao, J.; Chen, S.-X. Four logarithmically completely monotonic functions involving gamma function. J. Korean Math. Soc. 2008, 45, 559–573. [Google Scholar] [CrossRef]
- Mahmoud, M.; Qi, F. Bounds for completely monotonic degrees of remainders in asymptotic expansions of the digamma function. Math. Inequal. Appl. 2022, 25, 291–306. [Google Scholar] [CrossRef]
- Ouimet, F.; Qi, F. Logarithmically complete monotonicity of a matrix-parametrized analogue of the multinomial distribution. Math. Inequal. Appl. 2022, 25, 703–714. [Google Scholar] [CrossRef]
- Qi, F. Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, 2010, 493058. [Google Scholar] [CrossRef]
- Qi, F. Bounds for the ratio of two gamma functions: From Gautschi’s and Kershaw’s inequalities to complete monotonicity. Turkish J. Anal. Number Theory 2014, 2, 152–164. [Google Scholar] [CrossRef]
- Qi, F. Complete monotonicity for a new ratio of finitely many gamma functions. Acta Math. Sci. Ser. B (Engl. Ed.) 2022, 42B, 511–520. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Refinements, generalizations, and applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, 2009, 271923. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Karapinar, E.; Kostić, M.; Cao, J.; Du, W.-S. A Brief Overview and Survey of the Scientific Work by Feng Qi. Axioms 2022, 11, 385. https://doi.org/10.3390/axioms11080385
Agarwal RP, Karapinar E, Kostić M, Cao J, Du W-S. A Brief Overview and Survey of the Scientific Work by Feng Qi. Axioms. 2022; 11(8):385. https://doi.org/10.3390/axioms11080385
Chicago/Turabian StyleAgarwal, Ravi Prakash, Erdal Karapinar, Marko Kostić, Jian Cao, and Wei-Shih Du. 2022. "A Brief Overview and Survey of the Scientific Work by Feng Qi" Axioms 11, no. 8: 385. https://doi.org/10.3390/axioms11080385
APA StyleAgarwal, R. P., Karapinar, E., Kostić, M., Cao, J., & Du, W. -S. (2022). A Brief Overview and Survey of the Scientific Work by Feng Qi. Axioms, 11(8), 385. https://doi.org/10.3390/axioms11080385