Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean
Abstract
:1. Introduction
2. Lemmas
- 1.
- If the sequenceis increasing, so is the functionon.
- 2.
- If the sequenceis increasing forand decreasing for, then there existssuch thatis increasing onand decreasing on.
3. Necessary and Sufficient Conditions
4. Applications of Necessary and Sufficient Conditions
- 1.
- The double inequality
- 2.
- The double inequality
- 3.
- The double inequality
- 4.
- The double inequality
5. Remarks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neuman, E.; Sándor, J. On the Schwab-Borchardt mean. Math. Pannon. 2003, 14, 253–266. [Google Scholar]
- Seiffert, H.-J. Aufgabe β 16. Wurzel 1995, 29, 221–222. [Google Scholar]
- Seiffert, H.-J. Problem 887. Nieuw Arch. Wiskd. 1993, 11, 176. [Google Scholar]
- Chu, Y.-M.; Long, B.-L. Bounds of the Neuman–Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, 2013, 6. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Long, B.-L.; Gong, W.-M.; Song, Y.-Q. Sharp bounds for Seiffert and Neuman–Sándor means in terms of generalized logarithmic means. J. Inequal. Appl. 2013, 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-M.; Wang, M.-K.; Gong, W.-M. Two sharp double inequalities for Seiffert mean. J. Inequal. Appl. 2011, 2011, 7. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-M.; Zong, C.; Wang, G.-D. Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean. J. Math. Inequal. 2011, 5, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.-D. Some sharp inequalities involving reciprocals of the Seiffert and other means. J. Math. Inequal. 2012, 6, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.-D.; Qi, F. Sharp bounds for Neuman-Sándor’s mean in terms of the root-mean-square. Period. Math. Hungar. 2014, 69, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.-D.; Qi, F. Sharp bounds for the Neuman-Sándor mean in terms of the power and contraharmonic means. Cogent Math. 2015, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-M.; Long, B.-Y.; Chu, Y.-M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 2012, 6, 567–577. [Google Scholar] [CrossRef]
- Liu, H.; Meng, X.-J. The optimal convex combination bounds for Seiffert’s mean. J. Inequal. Appl. 2011, 2011, 9. [Google Scholar] [CrossRef] [Green Version]
- Neuman, E. A note on a certain bivariate mean. J. Math. Inequal. 2012, 6, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Neuman, E. Inequalities for the Schwab-Borchardt mean and their applications. J. Math. Inequal. 2011, 5, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Li, W.-H. A unified proof of inequalities and some new inequalities involving Neuman–Sándor mean. Miskolc Math. Notes 2014, 15, 665–675. [Google Scholar] [CrossRef]
- Sun, H.; Shen, X.-H.; Zhao, T.-H.; Chu, Y.-M. Optimal bounds for the Neuman-Sándor means in terms of geometric and contraharmonic means. Appl. Math. Sci. (Ruse) 2013, 7, 4363–4373. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y. A note on the Neuman-Sándor mean. J. Math. Inequal. 2014, 8, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-K.; Chu, Y.-M.; Liu, B.-Y. Sharp inequalities for the Neuman-Sándor mean in terms of arithmetic and contra-harmonic means. Rev. Anal. Numér. Théor. Approx. 2013, 42, 115–120. [Google Scholar]
- Zhao, T.-H.; Chu, Y.-M. A sharp double inequality involving identric, Neuman-Sándor, and quadratic means. Sci. Sin. Math. 2013, 43, 551–562. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y. Optimal bounds for Neuman-Sándor mean in terms of the convex cobinations of harmonic, geometric, quadratic, and contra-harmonic means. Abstr. Appl. Anal. 2012, 2012, 9. [Google Scholar] [CrossRef]
- Neuman, E.; Sándor, J. On the Schwab-Borchardt mean II. Math. Pannon. 2006, 17, 49–59. [Google Scholar]
- Sánchez-Reyes, J. The hyperbolic sine cardinal and the catenary. Coll. Math. J. 2012, 43, 285–290. [Google Scholar] [CrossRef]
- Li, W.-H.; Miao, P.; Guo, B.-N. Bounds for the Neuman–Sándor mean in terms of the arithmetic and contra-harmonic means. Axioms 2022, 11, 236. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities, and Quasiconformal Maps; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Simić, S.; Vuorinen, M. Landen inequalities for zero-balanced hypergeometric function. Abstr. Appl. Anal. 2012, 2012, 11. [Google Scholar] [CrossRef]
- Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; A Wiley-Interscience Publication; publisher-name>John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
- Qi, F. On signs of certain Toeplitz–Hessenberg determinants whose elements involve Bernoulli numbers. Contrib. Discrete Math. 2022, 17, 2. Available online: https://www.researchgate.net/publication/356579520 (accessed on 22 June 2022).
- Shuang, Y.; Guo, B.-N.; Qi, F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 12. [Google Scholar] [CrossRef]
- Qi, F.; Taylor, P. Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind. arXiv 2022, arXiv:2204.05612. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, Applied Mathematics Series 55, 10th Printing; Dover Publications: New York, NY, USA; Washington, DC, USA, 1972. [Google Scholar]
- Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Guo, B.-N.; Lim, D.; Qi, F. Maclaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function. Appl. Anal. Discrete Math. 2022, 16, 2. [Google Scholar] [CrossRef]
- Guo, B.-N.; Lim, D.; Qi, F. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021, 6, 7494–7517. [Google Scholar] [CrossRef]
- Qi, F. Explicit Formulas for Partial Bell Polynomials, Maclaurin’s Series Expansions of Real Powers of Inverse (Hyperbolic) Cosine and Sine, and Series Representations of Powers of Pi; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Qi, F. Taylor’s series expansions for real powers of functions containing squares of inverse (hyperbolic) cosine functions, explicit formulas for special partial Bell polynomials, and series representations for powers of circular constant. arXiv 2021, arXiv:2110.02749. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.-H.; Shen, Q.-X.; Guo, B.-N. Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean. Axioms 2022, 11, 304. https://doi.org/10.3390/axioms11070304
Li W-H, Shen Q-X, Guo B-N. Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean. Axioms. 2022; 11(7):304. https://doi.org/10.3390/axioms11070304
Chicago/Turabian StyleLi, Wen-Hui, Qi-Xia Shen, and Bai-Ni Guo. 2022. "Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean" Axioms 11, no. 7: 304. https://doi.org/10.3390/axioms11070304
APA StyleLi, W. -H., Shen, Q. -X., & Guo, B. -N. (2022). Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean. Axioms, 11(7), 304. https://doi.org/10.3390/axioms11070304