The Eigensharp Property for Unit Graphs Associated with Some Finite Rings
Abstract
:1. Introduction
2. Preliminaries
3. Unit Graph Associated with Rings and
4. Unit Graph Associated with the Ring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, I. Coloring of commutative rings. J. Algebra 1988, 116, 208–226. [Google Scholar] [CrossRef]
- Anderson, D.F.; Badawi, A. The total graph of a commutative ring. J. Algebra 2008, 320, 2706–2719. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, R.P. Graphs from rings. In Proceedings of the 20th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, USA, 20–24 February 1989; Volume 71, pp. 95–103. [Google Scholar]
- Ashrafi, N.; Maimani, H.R.; Pournaki, M.R.; Yassemi, S. Unit graphs associated with rings. Commun. Algebra 2010, 38, 2851–2871. [Google Scholar] [CrossRef]
- Akbari, S.; Estaji, E.; Khorsandi, M.R. On the unit graph of a noncommutative ring. Algebra Colloq. 2015, 22, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Maimani, H.R.; Pournaki, M.R.; Yassemi, S. Necessary and sufficient conditions for unit graphs to be Hamiltonian. Pacific J. Math. 2011, 249, 419–429. [Google Scholar] [CrossRef]
- Heydari, F.; Nikmehr, M.J. The unit graph of a left Artinian ring. Acta Math. Hungar. 2013, 139, 134–146. [Google Scholar] [CrossRef]
- Afkhami, M.; Khosh-Ahang, F. Unit graphs of rings of polynomials and power series. Arabian J. Math. 2013, 2, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Cioab a, S.M.; Tait, M. Variations on a theme of Graham and Pollak. Discrete Math. 2013, 13, 665–676. [Google Scholar] [CrossRef]
- Graham, R.L.; Pollak, H.O. On embedding graphs in squashed cubes. In Graph Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1972; pp. 99–110. [Google Scholar]
- Monson, S.D.; Pullman, N.J.; Rees, R. A survey of clique and biclique coverings and factorizations of (0,1)-matrices. Bull. Inst. Combin. Appl. 1995, 14, 17–86. [Google Scholar]
- Radhakrishnan, J.; Sen, P.; Vishwanathan, S. Depth-3 arithmetic for and extensions of the Graham-Pollack theorem. In FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; pp. 176–187. [Google Scholar]
- Zaks, J. Nearly-neighborly families of tetrahedra and the decomposition of some multigraphs. J. Combin. Theory Ser. A 1988, 48, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.L.; Pollak, H.O. On the addressing problem for loop switching. Bell Syst. Tech. J. 1971, 50, 2495–2519. [Google Scholar] [CrossRef]
- Cioab a, S.M.; Elzinga, R.J.; Markiewitz, M.; Kevin, V.M.; Vanderwoerd, T. Addressing graph products and distance-regular graphs. Discret. Appl. Math. 2017, 229, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, E.; Maimani, H.R. On eigensharp and almost eigensharp graphs. Linear Algebra Its Appl. 2008, 429, 2746–2753. [Google Scholar] [CrossRef] [Green Version]
- Kratzke, T.; Reznick, B.; West, D. Eigensharp graphs: Decomposition into complete bipartite subgraphs. Trans. Amer. Math. Soc. 1988, 308, 637–653. [Google Scholar] [CrossRef]
- Pinto, T. Biclique Covers and Partitions. Electron. J. Comb. 2014, 21, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rawshdeh, E.; Abdelkarim, H.; Rawashdeh, E. On the Eigensharp of Corona Product. Int. J. Math. Comput. Sci. 2022, 17, 865–874. [Google Scholar]
- Gregory, D.A.; Shader, B.L.; Watts, V.L. Biclique decomposition and Hermitian rank. Linear Algebra Appl. 1999, 292, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Silvester, J.R. Determinants of block matrices. Math. Gaz. 2000, 84, 460–467. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkarim, H.A.; Rawshdeh, E.; Rawashdeh, E. The Eigensharp Property for Unit Graphs Associated with Some Finite Rings. Axioms 2022, 11, 349. https://doi.org/10.3390/axioms11070349
Abdelkarim HA, Rawshdeh E, Rawashdeh E. The Eigensharp Property for Unit Graphs Associated with Some Finite Rings. Axioms. 2022; 11(7):349. https://doi.org/10.3390/axioms11070349
Chicago/Turabian StyleAbdelkarim, Heba Adel, Eman Rawshdeh, and Edris Rawashdeh. 2022. "The Eigensharp Property for Unit Graphs Associated with Some Finite Rings" Axioms 11, no. 7: 349. https://doi.org/10.3390/axioms11070349
APA StyleAbdelkarim, H. A., Rawshdeh, E., & Rawashdeh, E. (2022). The Eigensharp Property for Unit Graphs Associated with Some Finite Rings. Axioms, 11(7), 349. https://doi.org/10.3390/axioms11070349