Context-Free Grammars for Several Triangular Arrays
Abstract
:1. Introduction
2. Grammatical Interpretations of the Triangular Array
3. Applications
3.1. The Bell Triangle
3.2. On the Coefficients of Modified Hermite Polynomials
3.3. The Bessel Polynomials
3.4. The Exponential Riordan Array
4. Real Rootedness
- (i)
- There exist polynomials for such thatwhere satisfies the recurrence relationwith , and .
- (ii)
- Assume and . If , then is a generalized Sturm sequence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.Y.C. Context-free grammars, differential operators and formal power series. Theor. Comput. Sci. 1993, 117, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.X.J.; Wang, L.X.W.; Yang, H.R.L. Context-free Grammars for Triangular Arrays. Acta Math. Sin. Engl. Ser. 2015, 31, 445–455. [Google Scholar] [CrossRef]
- Bóna, M.; Ehrenborg, R. A combinatorial proof of the log-concavity of the numbers of permutations with k runs. J. Combin. Theory Ser. A 2000, 90, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.-M.; Wang, Y. q-Eulerian polynomials and polynomials with only real zeros. Electron. J. Combin. 2008, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.-M. An explicit formula for the number of permutations with a given number of alternating runs. J. Combin. Theory Ser. A 2012, 119, 1660–1664. [Google Scholar] [CrossRef] [Green Version]
- Stanley, R.P. Longest alternating subsequences of permutations. Mich. Math. J. 2008, 57, 675–687. [Google Scholar] [CrossRef]
- Zhu, B.-X.; Yeh, Y.-N.; Lu, Q. Context-free grammars, generating functions and combinatorial arrays. Eur. J. Comb. 2019, 78, 236–255. [Google Scholar] [CrossRef]
- Ma, S.-M. Enumeration of permutations by number of alternating runs. Discret. Math. 2013, 313, 1816–1822. [Google Scholar] [CrossRef]
- Aigner, M. A characterization of the Bell numbers. Discret. Math. 1999, 205, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, H.; Wang, Y. Total positivity of recursive matrices. Linear Algebra Its Appl. 2015, 471, 383–393. [Google Scholar] [CrossRef]
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: http://oeis.org (accessed on 30 January 2022).
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials. Trans. Amer. Math. Soc. 1945, 65, 100–115. [Google Scholar] [CrossRef]
- Goldman, J.; Haglund, J. Generalized rook polynomials. J. Combin. Theory Ser. A 2000, 91, 509–530. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Seo, S. Combinatorial proofs of inverse relations and log-concavity for Bessel numbers. Eur. J. Combin. 2008, 29, 1544–1554. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.-M. Some combinatorial arrays generated by context-free grammars. Eur. J. Comb. 2013, 34, 1081–1091. [Google Scholar] [CrossRef]
- Barry, P. Exponential Riordan Arrays and Permutation Enumeration. J. Integer Seq. 2010, 13, Article 10.9.1. [Google Scholar]
- Barbero, J.F. Salas, G.J. Bivariate generating functions for a class of linear recurrences: General structure. J. Comb. Theory Ser. A 2014, 125, 146–165. [Google Scholar] [CrossRef] [Green Version]
- Théorêt, P. Hyperbinomiales: Doubles Suites Satisfaisant à Des équations aux Différences Partielles de Dimension et D’ordre deux de la Forme H(n,k) = p(n,k)H(n − 1,k) + q(n,k)H(n − 1,k − 1). Ph.D. Thesis, Université du Québec à Montréal, Montreal, QC, Canada, May 1994. [Google Scholar]
- Théorêt, P. Fonctions génératrices pour une classe déquations aux différences partielles. Ann. Sci. Math. Québec 1995, 19, 91–105. [Google Scholar]
- Liu, L.L.; Wang, Y. A unified approach to polynomial sequences with only real zeros. Adv. Appl. Math. 2007, 38, 542–560. [Google Scholar] [CrossRef] [Green Version]
Description | Entry | |
---|---|---|
(1,−1,1,0,1,1,0) | Eulerian numbers | A173018 |
(2,−1,1,0,1,1,0) | Second-order Eulerian numbers | A008517 |
(0,1,0,0,1,0,0) | Surj | A019538 |
(1,1,0,0,1,0,0) | Ward numbers | A134991 |
(0,0,1,0,1,0,0) | Stirling subset numbers | A008277 |
(0,0,−1,−1,−1,0,0) | Lah numbers | A008297 |
(0,0,1,1,1,0,0) | Unsigned Lah numbers | A105278 |
(−2,1,−2,0,0,1,0) | Coefficients of Laguerre polynomials in reverse order | A021010 |
(0,0,1,0,0,1,0) | Binomial coefficients | A007318 |
(0,0,1,1,0,0,0) | Stirling cycle numbers | A132393 |
(0,0,1,−1,0,0,0) | Stirling numbers of the 1st kind | A008275 |
(0,0,1,0,1,2,1) | Production of the triangle of Stirling numbers of the 2nd kind with the Pascal’s triangle read by rows | A137597 |
(0,0,1,0,1,0,1) | Set partitions without singletons | A217537 |
(0,0,1,0,2,1,2) | Exponential Riordan Array | A154602 |
(0,1,0,0,2,1,1) | A196347 | |
(0,1,0,0,2,2,1) | Row-generating function is | A073474 |
(1,1,0,2,2,2,1) | The number of labeled rooted Greg trees | A048160 |
(2,−1,2,0,0,0,1) | The number of fixed-point-free involutions of having k cycles with entries of opposite parities | A161119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.R.; Yeh, J.; Ren, F. Context-Free Grammars for Several Triangular Arrays. Axioms 2022, 11, 297. https://doi.org/10.3390/axioms11060297
Zhou RR, Yeh J, Ren F. Context-Free Grammars for Several Triangular Arrays. Axioms. 2022; 11(6):297. https://doi.org/10.3390/axioms11060297
Chicago/Turabian StyleZhou, Roberta Rui, Jean Yeh, and Fuquan Ren. 2022. "Context-Free Grammars for Several Triangular Arrays" Axioms 11, no. 6: 297. https://doi.org/10.3390/axioms11060297
APA StyleZhou, R. R., Yeh, J., & Ren, F. (2022). Context-Free Grammars for Several Triangular Arrays. Axioms, 11(6), 297. https://doi.org/10.3390/axioms11060297