Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials
Abstract
1. Introduction and Preliminaries
2. Initial Taylor Coefficients Estimates for the Functions of
3. Fekete–Szegő Inequality for the Function Class
4. The Subclass of Bi-Univalent Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.S.; Kim, T.; Rim, S.H. Some identities involving Gegenbauer polynomials. Adv. Differ. Equ. 2012, 2012, 219. [Google Scholar] [CrossRef]
- Al-Salam, W.A.; Carlitz, L. The Gegenbauer addition theorem. J. Math. Phys. 1963, 42, 147–156. [Google Scholar] [CrossRef]
- McFadden, J.A. A diagonal expansion in Gegenbauer polynomials for a class of second-order probability densities. SIAM J. Appl. Math. 1966, 14, 1433–1436. [Google Scholar] [CrossRef]
- Stein, E.M.; Weiss, G. Introduction to Fourier Analysis in Euclidean Space; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comp. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Robertson, M.S. On the coefficients of typically-real functions. Bull. Am. Math. Soc. 1935, 41, 565–572. [Google Scholar] [CrossRef]
- Szynal, J. An extension of typically-real functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1994, 48, 193–201. [Google Scholar]
- Hallenbeck, D.J. Convex hulls and extreme points of families of starlike and close-to-convex mappings. Pac. J. Math. 1975, 57, 167–176. [Google Scholar] [CrossRef][Green Version]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series, 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Srivastava, H.M. A note on the Fekete-Szego problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. 2017, 101, 143–149. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Hamidi, S.G. Advances on the coefficients of bi-prestarlike functions. Comptes Rendus Acad. Sci. Paris 2016, 354, 980–985. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Yalçın, S. On λ pseudo bi-starlike functions related (p;q)-Lucas polynomial. Lib. Math. 2019, 39, 59–77. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, S.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2018, 43, 1873–1879. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kamali, M.; Urdaletova, A. A study of the Fekete-Szego functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials. AIMS Math. 2022, 7, 2568–2584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surv. Math. Appl. 2021, 16, 193–205. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Güney, H.Ö.; Vijaya, K. Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial. Adv. Stud. Contemp. Math. 2022, 32, 5–15. [Google Scholar]
- Wanas, A.K. New families of bi-univalent functions governed by Gegenbauer Polynomials. Earthline J. Math. Sci. 2021, 7, 403–427. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Gegenbauer Polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Yamakawa, R. Certain Subclasses of p-Valently Starlike Functions with negative coefficients. In Current Topics in Analytic Function Theory; Srivastava, H.M., Owa, S., Eds.; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 1992; pp. 393–402. [Google Scholar]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Zaprawa, P. On the Fekete-Szego problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Obradović, M.; Yaguchi, T.; Saitoh, H. On some conditions for univalence and starlikeness in the unit disc. Rend. Math. Ser. VII 1992, 12, 869–877. [Google Scholar]
- Lashin, A.Y. Coefficient estimates for two subclasses of analytic and bi-univalent functions. Ukr. Math. J. 2019, 70, 1484–1492. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugusundaramoorthy, G.; Bulboacă, T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms 2022, 11, 92. https://doi.org/10.3390/axioms11030092
Murugusundaramoorthy G, Bulboacă T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms. 2022; 11(3):92. https://doi.org/10.3390/axioms11030092
Chicago/Turabian StyleMurugusundaramoorthy, Gangadharan, and Teodor Bulboacă. 2022. "Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials" Axioms 11, no. 3: 92. https://doi.org/10.3390/axioms11030092
APA StyleMurugusundaramoorthy, G., & Bulboacă, T. (2022). Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms, 11(3), 92. https://doi.org/10.3390/axioms11030092