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G.; Bulboacă, T. Subclasses of

Yamakawa-Type Bi-Starlike

Functions Associated with

Gegenbauer Polynomials. Axioms

2022, 11, 92. https://doi.org/

10.3390/axioms11030092

Academic Editors: Georgia Irina Oros

and Kurt Bernardo Wolf

Received: 30 January 2022

Accepted: 22 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Subclasses of Yamakawa-Type Bi-Starlike Functions Associated
with Gegenbauer Polynomials

Gangadharan Murugusundaramoorthy 1,† and Teodor Bulboacă 2,*,†
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Abstract: In this paper, we introduce and investigate new subclasses (Yamakawa-type bi-starlike
functions and another class of Lashin, both mentioned in the reference list) of bi-univalent functions
defined in the open unit disk, which are associated with the Gegenbauer polynomials and satisfy
subordination conditions. Furthermore, we find estimates for the Taylor–Maclaurin coefficients |a2|
and |a3| for functions in these new subclasses. Several known or new consequences of the results are
also pointed out.
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Fekete–Szegő problem; Gegenbauer polynomials; Yamakawa-type bi-starlike functions

MSC: 30C45; 30C50

1. Introduction and Preliminaries

In geometric function theory, there have been numerous interesting and fruitful us-
ages of a wide variety of special functions, q-calculus and special polynomials; for ex-
ample, the Fibonacci polynomials, the Faber polynomials, the Lucas polynomials, the
Pell polynomials, the Pell–Lucas polynomials, and the Chebyshev polynomials of the
second kind. The Horadam polynomials are potentially important in a variety of disci-
plines in the mathematical, physical, statistical, and engineering sciences. Gegenbauer
polynomials or ultra spherical polynomials Gλ

n can be obtained using the Gram–Schmidt
orthogonalization process for polynomials in the domain (−1, 1) with the weight factor(
1− `2)λ− 1

2 , λ > −1
2

. Also, G0
n(`) is defined as lim

λ→0

Gλ
n(`)

λ
, and for λ 6= 0 the resulting

polynomial Rn(`) is multiplied by a number which makes the value at ` = 1 equal to
(2λ)n/n! = 2λ(2λ + 1)(2λ + 2) . . . (2λ + n − 1)/n!. For λ = 0 and n 6= 0, the value at

` = 1 is
2
n

, while G0
0(`) = 1.

The Gegenbauer polynomials (for details, see Kim et al. [1] and references cited

therein) are given in terms of the Jacobi polynomials P(ν,υ)
n , with ν = υ = λ− 1

2
,
(

λ > −1
2

,

λ 6= 0
)

, defined by

Gλ
n(`) =

Γ
(

λ + 1
2

)
Γ(n + 2λ)

Γ(2λ)Γ
(

n + λ + 1
2

)P(
λ− 1

2 ,λ− 1
2 )

n (`)

=

(
n + 2λ− 1

n

) n

∑
k=0

(n
k)(2λ + n)k(

λ + 1
2

)
k

(
`− 1

2

)k
, (1)
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where (a)n := a(a + 1)(a + 2) . . . (a + n− 1), and (a)0 := 1.
From (1), it follows that Gλ

n(`) is a polynomial of degree n with real coefficients, and

Gλ
n(1) =

(
n + 2λ− 1

n

)
, while the leading coefficient of Gλ

n(`) is 2n
(

n + λ− 1
n

)
. By the

theory of Jacobi polynomials, for µ = υ = λ− 1
2

, with λ > −1
2

, and λ 6= 0, we get

Gλ
n(−`) = (−1)nGλ

n(`).

It is easy to show that Gλ
n(`) is a solution of the Gegenbauer differential equation

(1− `2)y′′ − (2λ)`y′ + n(n + 2λ)y = 0,

with ` = 0 an ordinary point; this means that we can express the solution in the form of a

power series y =
∞
∑

n=0
an`n, and the Rodrigues formula for the Gegenbauer polynomials is

(see [2,3]) as follows:(
1− `2

)λ− 1
2
Gλ

n(`) =
(−2)n(λ)n

n!(n + 2λ)n

(
d
d`

)n(
1− `2

)n+λ− 1
2 ,

and the above relation can be easily derived from the properties of Jacobi polynomials.
The generating function of Gegenbauer polynomials is given by (see [1,4])

2λ− 1
2

(1− 2`t + t2)
1
2
(

1− `t +
√

1− 2`t + t2
)λ− 1

2
=

(
λ− 1

2

)
n

(2λ)n
Gλ

n(`)t
n, (2)

and this equality can be derived from the generating function of Jacobi polynomials.
From the above relation (2), we note that

1

(1− 2`t + t2)
λ
=

∞

∑
n=0

Gλ
n(`)t

n, t ∈ C, |t| < 1, ` ∈ [−1, 1], λ ∈
(
−1

2
,+∞

)
\ {0}, (3)

and the proof is given in [4] and Kim et al. [1] (also, see [5]) where the authors extensively
studied many results from different perspectives. For λ = 1, the relation (3) gives the

ordinary generating function for the Chebyshev polynomials, and for λ =
1
2

, we obtain the
ordinary generating function for the Legendre polynomials (see also [6]).

In 1935, Robertson [7] proved an integral representation for the typically real-valued
function class TR having the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ ∆ := {z ∈ C : |z| < 1}, (4)

which is holomorphic in the open unit disc ∆, real for z ∈ (−1, 1), and satisfies the condition

Im f (z) Im z > 0, z ∈ ∆\(−1, 1).

Namely, f ∈ TR if and only if it has the representation

f (z) =
∫ 1

−1

z
1− 2`z + z2 dµ, z ∈ ∆,

where µ is a probability measure on [−1, 1]. The class TR has been extended in [8] to the
class TR(λ), λ > 0, which was defined by
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f (z) =
∫ 1

−1
Φλ

` (z) dµ(`), z ∈ ∆, −1 ≤ ` ≤ 1, (5)

where
Φλ

` (z) :=
z

(1− 2`z + z2)
λ

, z ∈ ∆, −1 ≤ ` ≤ 1, (6)

and µ is a probability measure on [−1, 1]. The function Φλ
` (z) has the following Taylor–

Maclaurin series expansion:

Φλ
` (z) = z +Gλ

1 (`)z
2 +Gλ

2 (`)z
3 +Gλ

3 (`)z
4 + · · ·+Gλ

n−1(`)z
n + . . . , (7)

where Gλ
n(`) denotes the Gegenbauer (or ultra spherical) polynomials of order λ and degree

n in `, which are generated by

Φλ
` (z) =

∞

∑
n=0

Gλ
n(`)z

n = z
(

1− 2`z + z2
)−λ

.

In particular,

Gλ
0 (`) = 1, Gλ

1 (`) = 2λ`, Gλ
2 (`) = 2λ(λ + 1)`2 − λ = 2(λ)2`

2 − λ. (8)

Of course, we have TR(1) ≡ TR, and if f given by (5) is written in the power expansion
series (4), then we have

an =
∫ 1

−1
Gλ

n−1(`) dµ(`).

One can easily see that the class TR(λ), λ > 0, is a compact and convex set in the linear

space of holomorphic functions f (z) = z +
∞
∑

n=2
an zn which are holomorphic in ∆, endowed

with the topology of local uniform convergence on compact subsets of ∆. The importance
of the class TR(λ), λ > 0, follows as well from the paper of Hallenbeck [9], who studied the
extreme points of some families of univalent functions and proved that

coS∗R(1− λ) = TR(λ), and ext coS∗R(1− λ) =

{
z

(1− 2`z + z2)
λ

: ` ∈ [−1; 1]

}
,

where “co A” denotes the closed convex hull of A, “ext A” represents the set of the extremal
points of A, while S∗R(ϑ) denotes the class of holomorphic functions given by (5), which
are univalent and starlike of order ϑ, ϑ ∈ [0, 1), in ∆, and have real coefficients.

Let A represents the class of functions whose members are of the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ ∆, (9)

which are analytic in ∆, and let S be the subclass of A whose members are univalent in
∆. The Koebe one quarter theorem [10] ensures that the image of ∆ under every univalent

function f ∈ A contains a disk of radius
1
4

. Thus every univalent function f has an inverse

f−1 satisfying

f−1( f (z)) = z, (z ∈ ∆) and f
(

f−1(w)
)
= w,

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
.

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆,
and let Σ denote the class of bi-univalent functions defined in the unit disk ∆. Since f ∈ Σ
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has the Maclaurin series given by (9), a computation shows that its inverse g = f−1 has
the expansion

g(w) = f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 + . . . . (10)

We notice that the class Σ is not empty. For instance, the functions

f1(z) =
z

1− z
, f2(z) =

1
2

log
1 + z
1− z

, f3(z) = − log(1− z)

with their corresponding inverses

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew

are elements of Σ. However, the Koebe function is not a member of Σ. Lately,
Srivastava et al. [11] have essentially revived the study of analytic and bi-univalent
functions; this was followed by such works as those of [12–17]. Several authors have
introduced and examined subclasses of bi-univalent functions and obtained bounds for the
initial coefficients (see [11–13,15]), bi-close-to-convex functions [18,19], and bi-prestarlike
functions by Jahangiri and Hamidi [20].

Orthogonal polynomials have been broadly considered in recent years from vari-
ous perceptions due to their importance in mathematical physics, mathematical statistics,
engineering, and probability theory. Orthogonal polynomials that appear most often in
applications are the classical orthogonal polynomials (Hermite polynomials, Laguerre poly-
nomials, and Jacobi polynomials). The previously mentioned Fibonacci polynomials, Faber
polynomials, the Lucas polynomials, the Pell polynomials, the Pell–Lucas polynomials, the
Chebyshev polynomials of the second kind, and Horadam polynomials have been studied
in several papers from a theoretical point of view and recently in the case of bi-univalent
functions (see [21–28] also the references cited therein).

Here, in this article, we associate certain bi-univalent functions with Gegenbauer
polynomials and then explore some properties of the class of bi-starlike functions based on
earlier work of Srivastava et al. (also, see [11]). In addition, motivated by recent works by
Murugusundaramoorthy et al. [29], Wannas [30] and Amourah et al. [31], we introduce
a new subclass of the Yamakawa-type bi-starlike function class (see [32]) associated with
Gegenbauer polynomials, obtain upper bounds of the initial Taylor coefficients |a2| and
|a3| for the functions f ∈ GYΣ

(
Φλ

`

)
defined by subordination, and consider the remarkable

Fekete–Szegő problem. We also provide relevant connections of our results with those of
some earlier investigations.

First, we define a new subclass Yamakawa-type bi-starlike in the open unit disk,
associated with Gegenbauer polynomials as below.

Unless otherwise stated, we let 0 ≤ ϑ ≤ 1, λ >
1
2

and ` ∈
(

1
2

, 1
]

.

Definition 1. For 0 ≤ ϑ ≤ 1 and ` ∈
(

1
2

, 1
]

, a function f ∈ Σ of the form (9) is said to be in the

class GYΣ
(
ϑ, Φλ

`

)
if the following subordinations hold:

f (z)
(1− ϑ)z + ϑz f ′(z)

≺ Φλ
` (z), (11)

and
g(w)

(1− ϑ)w + ϑwg′(w)
≺ Φλ

` (w) (12)

where z, w ∈ ∆, Φλ
` is given by (6), and g = f−1 is given by (10).
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By specializing the parameter ϑ, we state a new subclass of Yamakawa-type bi-starlike
in the open unit disk, associated with Gegenbauer polynomials as below:

Remark 1. For ϑ = 1, we get YS∗Σ
(
Φλ

`

)
:= GYΣ

(
1, Φλ

`

)
, thus f ∈ YS∗Σ

(
Φλ

`

)
if f ∈ Σ and the

following subordinations hold:

f (z)
z f ′(z)

≺ Φλ
` (z) and

g(w)

wg′(w)
≺ Φλ

` (w)

where z, w ∈ ∆, and g = f−1 is given by (10).

Remark 2. For ϑ = 0, we get NΣ
(
Φλ

`

)
:= GYΣ

(
0, Φλ

`

)
, thus f ∈ NΣ

(
Φλ

`

)
if f ∈ Σ and the

following subordinations hold:

f (z)
z
≺ Φλ

` (z) and
g′(w)

w
≺ Φλ

` (w)

where z, w ∈ ∆ and g = f−1 is given by (10).

Note that if in the above Remarks 1 and 2, we choose λ = 1 or λ =
1
2

, then we can

state the new subclasses of YS∗Σ
(
Φλ

`

)
and NΣ

(
Φλ

`

)
related with Chebyshev polynomials

and Legendre polynomials, respectively.

2. Initial Taylor Coefficients Estimates for the Functions of GYΣ

(
ϑ, Φλ

`

)
To obtain our first results, we need the following lemma:

Lemma 1 ([33], p. 172). Assume that ω(z) =
∞
∑

n=1
ωnzn, z ∈ U, is an analytic function in U such

that |ω(z)| < 1 for all z ∈ U. Then,

|ω1| ≤ 1, |ωn| ≤ 1− |ω1|2, n = 2, 3, . . . .

In the next result, we obtain the upper bounds for the modules of the first two
coefficients for the functions that belong to the class GYΣ

(
ϑ, Φλ

`

)
.

Theorem 1. Let f given by (9) be in the class GYΣ
(
ϑ, Φλ

`

)
. Then,

|a2| ≤
2λ`
√

2λ`√∣∣(1− 6ϑ + 6ϑ2)4λ2`2 − 2
(
2(λ)2`2 − λ

)
(1− 2ϑ)2

∣∣ , (13)

and

|a3| ≤
2(λ`)2(1− 2ϑ− 2ϑ2)
|(1− 3ϑ)(1− 2ϑ)2| +

2λ`

|1− 3ϑ| , (14)

where ϑ 6= 1
3

.

Proof. Let f ∈ GYΣ
(
ϑ, Φλ

`

)
and g = f−1. From the definition in Formulas (11) and (12),

we have
f (z)

(1− ϑ)z + ϑz f ′(z)
= Φλ

` (u(z)) (15)

and
g(w)

(1− ϑ)w + ϑwg′(w)
= Φλ

` (v(w)), (16)
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where the functions u and v are of the form

u(z) = c1z + c2z2 + . . . , (17)

and
v(w) = d1w + d2w2 + . . . , (18)

are analytic in ∆ with u(0) = 0 = v(0), and |u(z)| < 1, |v(w)| < 1, for all z, w ∈ ∆. From
Lemma 1 it follows that

|cj| ≤ 1 and |dj| ≤ 1, for all j ∈ N. (19)

Replacing (17) and (18) in (15) and (16), respectively, we have

f (z)
(1− ϑ)z + ϑz f ′(z)

= 1 +Gλ
1 (`)u(z) +Gλ

2 (`)u
2(z) + . . . , (20)

and
g(w)

(1− ϑ)w + ϑwg′(w)
= 1 +Gλ

1 (`)v(w) +Gλ
2 (`)v

2(w) + . . . . (21)

In view of (9) and (10), from (20) and (21), we obtain

1 + (1− 2ϑ)a2z +
[
(1− 3ϑ)a3 − 2ϑ(1− 2ϑ)a2

2

]
z2 + . . .

= 1 +Gλ
1 (`)c1z +

[
Gλ

1 (`)c2 +Gλ
2 (`)c

2
1

]
z2 + . . . ,

and

1− (1− 2ϑ)(α)a2w +
{(

1− 4ϑ + 2ϑ2
)

a2
2 − (1− 3λ)a3

}
w2 + . . .

= 1 +Gλ
1 (`)d1w +

[
Gλ

1 (`)d2 +Gλ
2 (`)d

2
1

]
w2 + . . . ,

which yields the following relations:

(1− 2ϑ)a2 = Gλ
1 (`)c1, (22)

(1− 3ϑ)a3 − 2ϑ(1− 2ϑ)a2
2 = Gλ

1 (`)c2 +Gλ
2 (`)c

2
1, (23)

and

−(1− 2ϑ)a2 = Gλ
1 (`)d1, (24)

−(1− 3ϑ)a3 +
(

1− 4ϑ + 2ϑ2
)

a2
2 = Gλ

1 (`)d2 +Gλ
2 (`)d

2
1. (25)

From (22) and (24), it follows that

c1 = −d1, (26)

and

2(1− 2ϑ)2a2
2 = [Gλ

1 (`)]
2(c2

1 + d2
1),

a2
2 =

[Gλ
1 (`)]

2

2(1− 2ϑ)2 (c
2
1 + d2

1) (27)

Adding (23) and (25), using (27), we obtain

a2
2 =

[Gλ
1 (`)]

3(c2 + d2)

(1− 6ϑ + 6ϑ2)[Gλ
1 (`)]

2 − 2(1− 2ϑ)2Gλ
2 (`)

. (28)
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Applying (19) for the coefficients c2 and d2 and using (8), we obtain the
Inequality (13).

By subtracting (25) from (23), using (26) and (27), we get

a3 =
Gλ

1 (`)(c2 − d2)

2(1− 3ϑ)
+

(
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2

2(1− 3ϑ)
a2

2 (29)

=

(
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2(c2

1 + d2
1)

4(1− 3ϑ)(1− 2ϑ)2 +
Gλ

1 (`)(c2 − d2)

2(1− 3ϑ)
.

Using (8) and once again applying (19) for the coefficients c1, c2, d1, and d2, we deduce
the required Inequality (14).

By taking ϑ = 0 or ϑ = 1 and ` ∈ (0, 1), one can easily state the upper bounds for
|a2| and |a3| for the function classes GYΣ(0, Φ) =: NΣ

(
Φλ

`

)
and GYΣ(1, Φ) =: YS∗Σ

(
Φλ

`

)
,

respectively, as follows:

Remark 3. Let f given by (9) be in the class NΣ
(
Φλ

`

)
. Then,

|a2| ≤
2λ`
√

2λ`√∣∣4λ2`2 − 2
(
2(λ)2`2 − λ

)∣∣ ,
and

|a3| ≤ 2(λ`)2 + 2λ`.

Remark 4. Let f given by (9) be in the class YS∗Σ
(
Φλ

`

)
. Then,

|a2| ≤
2λ`
√

2λ`√∣∣4λ2`2 − 2
(
2(λ)2`2 − λ

)∣∣ ,
and

|a3| ≤ 3(λ`)2 + λ`.

Remark 5. Let f given by (9) be in the class GY∗Σ
(
ϑ, Φ1

`

)
. Then,

|a2| ≤
2`
√

2`√∣∣(1− 6ϑ + 6ϑ2)4`2 − 2(4`2 − 1)(1− 2ϑ)2
∣∣ ,

and

|a3| ≤
2`2(1− 2ϑ− 2ϑ2)
|(1− 3ϑ)(1− 2ϑ)2| +

2`
|1− 3ϑ| ,

where ϑ 6= 1
3

.

Remark 6. Let f given by (9) be in the class GY∗Σ
(

ϑ, Φ1/2
`

)
. Then, for ` 6= 1√

2
,

|a2| ≤
`
√
`√∣∣(1− 6ϑ + 6ϑ2)`2 − (3`2 − 1)(1− 2ϑ)2

∣∣ ,
and

|a3| ≤
`2(1− 2ϑ− 2ϑ2)

2|(1− 3ϑ)(1− 2ϑ)2| +
`

|1− 3ϑ| ,
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where ϑ 6= 1
3

.

In the above Remarks 3 and 4, by fixing λ = 1 and λ =
1
2

, we obtain the new estimates

of |a2| and |a3| for the function classes YS∗Σ
(
Φλ

`

)
and NΣ

(
Φλ

`

)
related with Chebyshev

polynomials and Legendre polynomials, respectively.

3. Fekete–Szegő Inequality for the Function Class GYΣ

(
ϑ, Φλ

`

)
Due to the result of Zaprawa [34], in this section, we obtain the Fekete–Szegő inequality

for the function classes GYΣ
(
ϑ, Φλ

`

)
.

Theorem 2. Let f given by (9) be in the class GYΣ
(
ϑ, Φλ

`

)
, and µ ∈ R. Then, we have

|a3 − µa2
2| ≤


2λ`

|1− 3ϑ| , if |h(µ)| ≤ 1
2|1− 3ϑ| ,

4λ`|h(µ)|, if |h(µ)| ≥ 1
2|1− 3ϑ| ,

where

h(µ) :=
2λ`2[2λ2`2(1− 2ϑ− 2ϑ2)− µ(1− 3ϑ)

]
(1− 3ϑ)

{
2λ`2(1− 6ϑ + 6ϑ2)− (1− 2ϑ)2[2(λ + 1)`2 − 1]

} ,

and ϑ 6= 1
3

.

Proof. If f ∈ GYΣ
(
ϑ, Φλ

`

)
is given by (9), from (28) and (29), we have

a3 − µa2
2 =

Gλ
1 (`)(c2 − d2)

2(1− 3ϑ)
+

((
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2

2(1− 3ϑ)
− µ

)
a2

2

=
Gλ

1 (`)(c2 − d2)

2(1− 3ϑ)
+

((
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2

2(1− 3ϑ)
− µ

)

×
[Gλ

1 (`)]
3(c2 + d2)

(1− 6ϑ + 6ϑ2)[Gλ
1 (`)]

2 − 2(1− 2ϑ)2Gλ
2 (`)

=Gλ
1 (`)

[(
h(µ) +

1
2(1− 3ϑ)

)
c2 +

(
h(µ)− 1

2(1− 3ϑ)

)
d2

]
,

where

h(µ) =
(
(
1− 2ϑ− 2ϑ2)[Gλ

1 (`)]
2 − 2µ(1− 3ϑ))[Gλ

1 (`)]
3

2(1− 3ϑ){(1− 6ϑ + 6ϑ2)[Gλ
1 (`)]

2 − 2(1− 2ϑ)2Gλ
2 (`)}

.

Now, by using (8)

a3 − µa2
2 =2λ`

[(
h(µ) +

1
2(1− 3ϑ)

)
c2 +

(
h(µ)− 1

2(1− 3ϑ)

)
d2

]
,

where

h(µ) =
2λ2`2[2λ2`2(1− 2ϑ− 2ϑ2)− µ(1− 3ϑ)

]
(1− 3ϑ)

{
2λ2`2(1− 2ϑ + 2ϑ2)− λ(1− 2ϑ)2[2(λ + 1)`2 − 1]

}
=

2λ`2[2λ2`2(1− 2ϑ− 2ϑ2)− µ(1− 3ϑ)
]

(1− 3ϑ)
{

2λ`2(1− 6ϑ + 6ϑ2)− (1− 2ϑ)2[2(λ + 1)`2 − 1]
}

Therefore, in view of (8) and (19), we conclude that the required inequality holds.
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4. The Subclass MΣ

(
τ, Φλ

`

)
of Bi-Univalent Functions

In [35] Obradović et al. gave some criteria for univalence expressed by Re f ′(z) > 0
for the linear combination

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

, τ ≥ 1, z ∈ ∆.

Based on the above definitions, recently, Lashin [36] introduced and studied new
subclasses of the bi-univalent function. In our further discussions, unless otherwise stated,

we let τ ≥ 1, λ >
1
2

, and ` ∈
(

1
2

, 1
]

.

Definition 2. A function f ∈ Σ given by (9) is said to be in the class MΣ
(
τ, Φλ

`

)
if it satisfies

the conditions

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

≺ Φλ
` (z) (30)

and

τ

(
1 +

wg′′(w)

g′(w)

)
+ (1− τ)

1
g′(w)

≺ Φλ
` (w) (31)

where τ ≥ 1, z, w ∈ ∆, Φλ
` is given by (6), and the function g = f−1 is given by (10).

Remark 7. For the particular case τ = 1, a function f ∈ Σ given by (9) is said to be in the class
MΣ

(
Φλ

`

)
=: KΣ

(
Φλ

`

)
if it satisfies the subordination relations

1 +
z f ′′(z)
f ′(z)

≺ Φλ
` (z) and 1 +

wg′′(w)

g′(w)
≺ Φλ

` (w),

z, w ∈ ∆, Φλ
` is given by (6), and g = f−1 is given by (10).

Theorem 3. Let f be given by (9) and f ∈MΣ
(
τ, Φλ

`

)
, with τ ≥ 1. Then,

|a2| ≤ min

 λ`

2(2τ − 1)
;

λ`
√

2λ`

2
√∣∣(1 + τ)λ2`2 − 4(2τ − 1)2[2`2(λ)2 − λ]

∣∣
, (32)

and

|a3| ≤ min
{

2λ`

3(3τ − 1)
+

λ2`2

4(2τ − 1)2 ;

2λ`

3(3τ − 1)
+

2λ3`3∣∣(1 + τ)λ2`)2
1 − (2τ − 1)2[2`2(λ)2 − λ]

∣∣
}

.

Proof. f ∈MΣ
(
τ, Φλ

`

)
, from (30) and (31) it follows that

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

= Φλ
` (u(z)), (33)

and

τ

(
1 +

wg′′(w)

g′(w)

)
+ (1− τ)

1
g′(w)

= Φλ
` (v(w)), (34)

where the functions u and v are analytic in ∆ with u(0) = 0 = v(0), such that |u(z)| < 1,
|v(w)| < 1, for all z, w ∈ ∆, and are of the form (17) and (18), respectively.
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From (33) and (34), we have

1 + 2(2τ − 1)a2z +
[
3(3τ − 1)a3 + 4(1− 2τ)2a2

2

]
z2 + . . .

= 1 +Gλ
1 (`)c1z +

[
Gλ

1 (`)c2 +Gλ
2 (`)c

2
1

]
z2 + . . . ,

and

1− 2(2τ − 1)a2w +
[
2(5τ − 1)a2

2 − 3(3τ − 1)a3

]
w2 − . . .

= 1 +Gλ
1 (`)d1w +

[
Gλ

1 (`)d2 +Gλ
2 (`)d

2
1

]
w2 + . . . ,

and equating the coefficients of the above two relations, we get

2(2τ − 1)a2 = Gλ
1 (`)c1, (35)

3(3τ − 1)a3 + 4(1− 2τ)a2
2 = Gλ

1 (`)c2 +Gλ
2 (`)c

2
1, (36)

and

−2(2τ − 1)a2 = Gλ
1 (`)d1, (37)

2(5τ − 1)a2
2 − 3(3τ − 1)a3 = Gλ

1 (`)d2 +Gλ
2 (`)d

2
1. (38)

From (35) and (37), we get
p1 = −q1 (39)

From (35), by using the Inequality (19) for the coefficients cj and dj, from (8), we have

|a2| ≤
Gλ

1 (`)

2(2τ − 1)
=

λ`

(2τ − 1)
.

Furthermore,

8(2τ − 1)2a2
2 =

(
Gλ

1 (`)
)2(

c2
1 + d2

1

)
,

that is,

a2
2 =

(
Gλ

1 (`)
)2(c2

1 + d2
1
)

8(2τ − 1)2 . (40)

Thus, from the Inequality (19) and using (8), we obtain

|a2| ≤
Gλ

1 (`)

4(2τ − 1)
=

λ`

2(2τ − 1)
. (41)

Now, from (36), (38) and using (40), we get

[
2(1 + τ)

(
Gλ

1 (`)
)2
− 8(2τ − 1)2Gλ

2 (`)
]
a2

2 =
(
Gλ

1 (`)
)3

(c2 + d2). (42)

Thus, according to (42), we obtain

a2
2 =

(
Gλ

1 (`)
)3
(c2 + d2)

2(1 + τ)
(
Gλ

1 (`)
)2 − 8(2τ − 1)2Gλ

2 (`)
,

hence,

|a2| ≤
λ`
√

2λ`

2
√∣∣(1 + τ)λ2`2 − 4(2τ − 1)2[2`2(λ)2 − λ]

∣∣ , (43)

and the Inequality (32) is proved.
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From (36), (38) and using (39), we get

a3 =
Gλ

1 (`)(c2 − d2)

6(3τ − 1)
+ a2

2, (44)

which implies

|a3| ≤
2λ`

3(3τ − 1)
+ |a2

2|. (45)

From this inequality, using (41), we obtain

|a3| ≤
2λ`

3(3τ − 1)
+

λ2`2

4(2τ − 1)2 .

Combining (45) and (43), it follows that

|a3| ≤
2λ`

3(3τ − 1)
+

2λ3`3∣∣(1 + τ)λ2`)2
1 − (2τ − 1)2[2`2(λ)2 − λ]

∣∣ .

Motivated by the result of Zaprawa [34], we discuss the Fekete–Szegő inequality [37]
for the functions f ∈MΣ

(
τ, Φλ

`

)
.

Theorem 4. For ν ∈ R, let f ∈MΣ
(
τ, Φλ

`

)
be given by (9). Then,

∣∣∣a3 − νa2
2

∣∣∣ ≤


2λ`

3(3τ − 1)
, if |h(ν)| ≤ 1

6(3τ − 1)
,

4|h(ν)|, if |h(ν)| ≥ 1
6(3τ − 1)

,

where

h(ν) =
(1− ν)λ`2

4
{
(1 + τ)λ`2 − (2τ − 1)2[2`2(λ + 1)− 1]

} . (46)

Proof. If f ∈MΣ
(
τ, Φλ

`

)
be given by (9), from (44) we have

a3 − νa2
2 =

Gλ
1 (`)(c2 − d2)

6(3τ − 1)
+ (1− ν)a2

2. (47)

By substituting (42) in (47), we obtain

a3 − νa2
2 =

Gλ
1 (`)(c2 − d2)

6(3τ − 1)
+

(1− ν)
(
Gλ

1 (`)
)3
(c2 + d2)

2(1 + τ)
(
Gλ

1 (`)
)2 − 8(2τ − 1)2Gλ

2 (`)

= Gλ
1 (`)

[(
h(ν) +

1
6(3τ − 1)

)
c2 +

(
h(ν)− 1

6(3τ − 1)

)
d2

]
,

where

h(ν) =
(1− ν)

(
Gλ

1 (`)
)2

2(1 + τ)
(
Gλ

1 (`)
)2 − 8(2τ − 1)2Gλ

2 (`)
.

From (8), it follows

a3 − νa2
2 = 2λ`

[(
h(ν) +

1
6(3τ − 1)

)
c2 +

(
h(ν)− 1

6(3τ − 1)

)
d2

]
, (48)

where the function h is given by (46). Hence, by using the triangle inequality for the
modulus of (48) together with (19), we get our result.



Axioms 2022, 11, 92 12 of 13

For ν = 1 the above theorem reduces to the following special case:

Remark 8. If f ∈MΣ
(
τ, Φλ

`

)
is given by (9), then∣∣∣a3 − a2

2

∣∣∣ ≤ 2λ`

3(3τ − 1)
.

5. Conclusions

Yamakawa-type bi-starlike functions related with the Gegenbauer polynomials are
defined for the first time, and initial Taylor coefficients and Fekete–Szegő inequality are

obtained. Further, by fixing λ = 1 or λ =
1
2

, the Gegenbauer polynomials lead to the
Chebyshev polynomials and the Legendre polynomials, respectively. Hence, our results
represent a new study of the Yamakawa family of bi-starlike functions associated with
Chebyshev and Legendre polynomials, which are also not considered in the literature. We
have left this as an exercise to interested readers.
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