The Boundary Homotopy Retract on the Scalar Hairy Charged Black Hole Spacetime
Abstract
:1. Introduction
2. The Metric Spacetime of and Its Inner and Outer Horizons
3. Boundary Retraction in Geometric Topology
- (i)
- is open
- (ii)
- ,
- (iii)
- and
- (iv)
- The boundary of the manifold has a constant curvature.
- (i)
- (ii)
- (iii)
- and .
4. Geodesic in Scalar Hairy Charged Black Hole Metric
4.1. The Photon-like Particle Phenomena in a Cosmological Function
4.2. The Dense Particle/Object Phenomena in a Cosmological Function
4.3. For Photon-like Particle
4.4. For Massive Particle
5. Boundary Retractions in Scalar Hairy Charged Black Hole
6. Boundary Homotopy Retracts on ()
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Wang, L.; Ding, C.; Jing, J. Holographic superconductors in the AdS black-hole spacetime with a global monopole. Nucl. Phys. B 2010, 836, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, R. Advanced Virgo and KAGRA. Living Rev. Relativ. 2018, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar]
- Chen, Y.; Lim, Y.K.; Teo, E. Deformed hyperbolic black holes. Phys. Rev. D 2015, 92, 044058. [Google Scholar] [CrossRef] [Green Version]
- Frebel, A. From Nuclei to the Cosmos: Tracing Heavy-Element Production with the Oldest Stars. Annu. Rev. Nucl. Part. Sci. 2018, 68, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.P.S. Cylindrical black hole in general relativity. Phys. Lett. B 1995, 46, 353. [Google Scholar]
- Lemos, J.P.S.; Zanchin, V.T. Rotating charged black strings in general relativity. Phys. Rev. D 1996, 54, 3840. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Black holes in general relativity. Commun. Math. Phys. 1972, 25, 152–166. [Google Scholar] [CrossRef]
- Kleihausa, B.; Kunza, J.; Yazadjiev, S. Scalarized hairy black holes. Phys. Lett. B 2015, 744, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.-C.; Myung, Y.S. Scalar hairy black holes in Einstein-Maxwell-conformally coupled scalar theory. Phys. Lett. B 2020, 803, 135332. [Google Scholar] [CrossRef]
- Baumgarte, T.W.; Shapiro, S.L. Binary black hole mergers. Phys. Today 2011, 64, 32–37. [Google Scholar] [CrossRef]
- Dwyer, W.; Kan, D.; Smith, J. Homotopy commutative diagrams and their realizations. J. Pure Appl. Algebra 1989, 57, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, D.R. Homotopy approach to quantum gravity. Int. J. Theor. Phys. 2008, 47, 534–552. [Google Scholar] [CrossRef] [Green Version]
- Galloway, G.J.; Shoen, R. A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 2006, 266, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Massey, W.S. Algebraic Topology, an Introduction; Harcourt Brace and World: New York, NY, USA, 1967. [Google Scholar]
- McCleary, J. A First Course in Topology, Continuity and Dimension; American Mathematical Society: Providence, RI, USA, 2006; Volume 31. [Google Scholar]
- Reid, M.; Szendroi, B. Topology and Geometry; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Richter, B. From Categories Homotopy Theory; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Robertson, R.S. Isometric folding of Riemannian manifolds. Proc. Roy. Soc. Edinb. 1977, 77, 275–289. [Google Scholar] [CrossRef]
- Shick, P.l. Topology, Point-Set and Geometry; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Simpson, C. Homotopy Theory of Higher Categories; Cambridge University Press: Cambridge, UK, 2011; Volume 19. [Google Scholar]
- Frolov, V.P.; Zelnikov, A. Introduction to Black Hole Physics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Doneva, D.D.; Yazadjiev, S.S. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories. Phys. Rev. Lett. 2018, 120, 131103. [Google Scholar] [CrossRef] [Green Version]
- Myung, Y.S.; Zou, D.C. Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory. Eur. Phys. J. 2019, 79, 273. [Google Scholar] [CrossRef]
- Vieira, H. Scalar fields in a five-dimensional Lovelock black hole spacetime. Ann. Phys. 2020, 418, 168197. [Google Scholar] [CrossRef]
- Zou, D.-C.; Myung, Y.S. Scalarized charged black holes with scalar mass term. Phys. Rev. D 2019, 100, 124055. [Google Scholar] [CrossRef] [Green Version]
- Mardini, M.K.; Placco, V.M.; Taani, A.; Li, H.; Zhao, G. Metal-poor Stars Observed with the Automated Planet Finder Telescope. II. Chemodynamical Analysis of Six Low-metallicity Stars in the Halo System of the Milky Way. Astrophys. J. 2019, 882, 27. [Google Scholar] [CrossRef] [Green Version]
- Mardini, M.; Li, H.; Alexeeva, S.; Placco, V.; Carollo, D.; Taani, A.; Ablimit, I.; Wang, L.; Zhao, G. Metal-poor stars observed with the automated planet finder telescop I. Discovery of six bright Carbon-enhanced metal-poor stars from LAMOST. Astrophys. J. 2019, 875, 89. [Google Scholar] [CrossRef]
- Taani, A.; Vallejo, J.C. Dynamical Monte Carlo Simulations of 3-D Galactic Systems in Axisymmetric and Triaxial Potentials. Publ. Astron. Soc. Aust. 2017, 34, 24. [Google Scholar] [CrossRef] [Green Version]
- Taani, A.; Abushattal, A.; Mardini, M. The regular dynamics through the finite-time Lyapunov exponent distributions in 3D Hamiltonian systems. Astron. Nachrichten 2019, 340, 847–851. [Google Scholar] [CrossRef]
- Wei, Y.C.; Taani, A.; Yuan-Yue, P.; Wang, J.; Cai, Y.; Liu, G.-C.; Luo, A.L.; Zhang, H.-B.; Zhao, Y.-H. Neutron Star Motion in the Disk Galaxy. Chin. Phys. Lett. 2010, 27, 9801. [Google Scholar]
- Beesham, A. Vaidya Collapse with Nonzero Radial Pressure and Charge. Axioms 2020, 9, 52. [Google Scholar] [CrossRef]
- Panotopoulos, G. Quasinormal Modes of Charged Black Holes in Higher-Dimensional Einstein-Power-Maxwell Theory. Axioms 2020, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Taani, A. Systematic comparison of initial velocities for neutron stars in different models. Res. Astron. Astrophys. 2016, 16, 101. [Google Scholar] [CrossRef]
- Taani, A.; Karino, S.; Song, L.; Al-Wardat, M.; Khasawneh, A.; Mardini, M.K. On the possibility of disk-fed formation in supergiant high-mass X-ray binaries. Res. Astron. Astrophys. 2019, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. Holography in general space-times. J. High Energy Phys. 1999, 1999, 28. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Roberts, M.M. Zero Temperature Limit of Holographic Superconductors. J. High Energy Phys. 2009, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, G.T.; Santos, J.E.; Toldo, C. Deforming black holes in AdS. J. High Energy Phys. 2018, 1, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D. The Area of a Rough Black Hol. Phys. Lett. B 2020, 808, 135643. [Google Scholar] [CrossRef] [PubMed]
- Lavenda, B.H. A New Perspective on Relativity, an Odyssey in Non-Euclidean Geometries; World Scientific Publishing: Singapore, 2012. [Google Scholar]
- Abbas, G.; Sabiullah, U. Geodesic study of regular Hayward black hole. Astrophys. Space Sci. 2014, 352, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Monte, E.M. What is the topology of a schwarzschild black hole? Int. J. Mod. Phys. Conf. Ser. 2012, 18, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Abu-Saleem, M.; Taani, A. Geometric transformations on a topological black hole and their applications. Chin. J. Phys. 2021, 74, 53–59. [Google Scholar] [CrossRef]
- Arraut, I.; Batic, D.; Nowakowski, M. Velocity and velocity bounds in static spherically symmetric metrics. Open Phys. 2011, 9, 926–938. [Google Scholar] [CrossRef] [Green Version]
- Abu-Saleem, M. The Minimum Deformation Retract on the Wormhole Spacetime. Int. J. Geom. Methods Mod. 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Abu-Saleem, M.; Taani, A. Retraction and folding on the hyperbolic black hole. AIP Adv. 2021, 11, 015309. [Google Scholar] [CrossRef]
- Abu-Saleem, M.; Vieira, H. Some aspects of the five-dimensional Lovelock black hole spacetime: Strong homotopy retract, perihelion precession and quasistationary levels. Ann. Phys. 2021, 433, 168583. [Google Scholar] [CrossRef]
- Abu-Saleem, M. Retractions and Homomorphisms on Some Operations of Graphs. J. Math. 2018, 2018, 7328065. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.A. On the dynamical hyperbolic 3 spaces and their deformation retracts. Proc. Jangjeon Math. Soc. 2012, 15, 189–193. [Google Scholar]
- Hod, S. Analytic treatment of near-extremal charged black holes supporting non-minimally coupled massless scalar clouds. Eur. Phys. J. C 2020, 80, 1150. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, C.-M.; Tanni, A.; Zhao, H.-H. Characteristic age and true age of pulsars. Int. J. Mod. Phys. Conf. Ser. 2013, 23, 95. [Google Scholar] [CrossRef]
- Gad, R.M. Energy distribution of a stringy charged black hole. Astrophys. Space Sci. 2005, 295, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Taani, A.; Vallejo, J.C.; Abu-Saleem, M. Assessing the complexity of orbital parameters after asymmetric kick in binary pulsars. J. High Energy Astrophys. 2022, 35, 83. [Google Scholar]
- Tsukamoto, N.; Harada, T.; Yajima, K. Can we distinguish between black holes and wormholes by their Einstein-ring systems? Phys. Rev. D 2012, 86, 104062. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, R.; Joshi, P.S. Can we distinguish black holes from naked singularities by the images of their accretion disks? J. Cosmol. Astropart. Phys. 2019, 2019, 64. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, M.; Bambi, C. Distinguishing black holes and naked singularities with iron line spectroscopy. J. Cosmol. Astropart. Phys. 2018, 2018, 44. [Google Scholar] [CrossRef] [Green Version]
- Jusufi, K.; Banerjee, A.; Gyulchev, G.; Amir, M. Distinguishing rotating naked singularities from Kerr-like wormholes by their deflection angles of massive particles. Eur. Phys. J. C 2019, 79, 28. [Google Scholar] [CrossRef] [Green Version]
- Frittelli, S.; Kling, T.P.; Newman, E.T. Spacetime perspective of Schwarzschild lensing. Phys. Rev. D 2000, 61, 064021. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, T.; Nakajima, K.; Asada, H. Demagnifying gravitational lenses toward hunting a clue of exotic matter and energy. Phys. Rev. D 2013, 87, 027501. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Taani, A.; Zhao, Y.; Zhang, C. Statistics and evolution of pulsars’ parameters. Chin. Astron. Astrophys. 2012, 36, 137. [Google Scholar] [CrossRef]
- Mahapatra, S.; Priyadarshineey, S.; Reddyz, G.; Shuklax, B. Exact topological charged hairy black holes in AdS Space in D-dimensions. Phys. Rev. D 2020, 102, 024042. [Google Scholar] [CrossRef]
- González, E.P.A.; Papantonopoulos, E.; Saavedra, J.; Vásquez, Y. Extremal hairy black holes. J. High Energy Phys. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C. Black hole’s quantum N-portrait. Fortschritte Phys. 2013, 61, 742. [Google Scholar] [CrossRef] [Green Version]
- Klemm, D. Four-dimensional black holes with unusual horizons. Phys. Rev. D 2014, 89, 084007. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.D. A proposal to resolve the black hole information paradox. Int. J. Mod. Phys. D 2002, 11, 1537. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Roy, R.; Tsai, Y.D.; Visinelli, L. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A*. arXiv 2022, arXiv:2205.07787. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Saleem, M.; Taani, A. The Boundary Homotopy Retract on the Scalar Hairy Charged Black Hole Spacetime. Axioms 2022, 11, 745. https://doi.org/10.3390/axioms11120745
Abu-Saleem M, Taani A. The Boundary Homotopy Retract on the Scalar Hairy Charged Black Hole Spacetime. Axioms. 2022; 11(12):745. https://doi.org/10.3390/axioms11120745
Chicago/Turabian StyleAbu-Saleem, Mohammed, and Ali Taani. 2022. "The Boundary Homotopy Retract on the Scalar Hairy Charged Black Hole Spacetime" Axioms 11, no. 12: 745. https://doi.org/10.3390/axioms11120745
APA StyleAbu-Saleem, M., & Taani, A. (2022). The Boundary Homotopy Retract on the Scalar Hairy Charged Black Hole Spacetime. Axioms, 11(12), 745. https://doi.org/10.3390/axioms11120745