Next Article in Journal
Mathematical Computations of Long-Term Settlement and Bearing Capacity of Soil Bases and Foundations near Vertical Excavation Pits
Next Article in Special Issue
Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator
Previous Article in Journal
Least Squares in a Data Fusion Scenario via Aggregation Operators
Previous Article in Special Issue
New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions

by
Ala Amourah
1,
Ibtisam Aldawish
2,*,
Khadeejah Rasheed Alhindi
3 and
Basem Aref Frasin
4,*
1
Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, Jordan
2
Department of Mathematics and Statistics, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11564, Saudi Arabia
3
Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
4
Department of Mathematics, Faculty of Science, Al Al-Bayt University, Mafraq 25113, Jordan
*
Authors to whom correspondence should be addressed.
Axioms 2022, 11(12), 680; https://doi.org/10.3390/axioms11120680
Submission received: 27 September 2022 / Revised: 23 November 2022 / Accepted: 25 November 2022 / Published: 28 November 2022

Abstract

:
In this study, a new class R Σ μ ( x , γ , α , δ , β ) of bi-univalent functions studied by means of Gegenbauer polynomials (GP) with Rabotnov functions is introduced. The coefficient of the Taylor coefficients a 2 and a 3 and Fekete-Szegö problems for functions belonging to R Σ μ ( x , γ , α , δ , β ) have been derived as well. Furthermore, a variety of new results will appear by considering the parameters in the main results.

1. Introduction

In 1948, Rabotnov [1] introduced a special function applied to viscoelasticity. This function, known today as the Rabotnov fractional exponential function or briefly Rabotnov function, is given by:
Φ α , λ ( ξ ) = ξ α n = 0 ( λ ) n ξ n 1 + α Γ ( n + 1 1 + α ) , ( α , λ , ξ C ) .
The Rabotnov function is a particular case of the familiar Mittag-Leffler widely used in the solution of fractional order integral equations or fractional order differential equations. The relation between the Rabotnov and Mittag-Leffler functions [2] can be written as follows
Φ α , λ ( ξ ) = ξ α E 1 + α , 1 + α ( λ ξ 1 + α ) ,
where E is Mittag-Leffler and α , λ , z C . Various properties of the generalized Mittag-Leffler function can be found in [3,4,5,6].
Let A denote the class of analytic functions f defined in U = { ξ C : ξ < 1 } and normalized by f ( 0 ) 1 = 0 = f ( 0 ) . Thus f A has a Taylor series expansion
f ( ξ ) = ξ + a 2 ξ 2 + a 3 ξ 3 + = ξ + n = 2 a n ξ n , ( ξ U ) .
Let S denote the class of all f A , which are univalent in U .
Let the function f and function g be analytic in U . We say that f is subordinate to g, written as f g , if there exists a Schwarz function ω , which is analytic in U with
| ω ( ξ ) | < 1 and ω ( 0 ) = 0
such that
g ( ω ( ξ ) ) = f ( ξ ) .
Moreover, if g is univalent in U , then the equivalence holds
f ( ξ ) g ( ξ ) iff f ( U ) g ( U ) and f ( 0 ) = g ( 0 ) .
It is well known that all functions f S have an inverse f 1 , defined by
ξ = f 1 ( f ( ξ ) ) ( ξ U )
and
w = f 1 ( f ( w ) ) ( w < r 0 ( f ) ; r 0 ( f ) 1 4 )
where
f 1 ( w ) = g ( w ) = w a 2 w 2 + w 3 ( 2 a 2 2 a 3 ) w 4 ( 5 a 2 3 5 a 2 a 3 + a 4 ) + .
f ( ξ ) is said to be bi-univalent in U if both f ( ξ ) and f 1 ( ξ ) are univalent in U .
Let Σ denote the class of bi-univalent functions in U given by (2). For interesting subclasses of functions in Σ , see ([7,8,9,10,11,12,13,14,15,16]).
In 1784, Legendre [17] discovered orthogonal polynomials, which have been studied extensively. The importance of orthogonal polynomials and their applications is manifested in various disciplines involving contemporary mathematics, physics and engineering. These polynomials play an essential role in problems of the approximation theory [18,19].
Ala Amourah et al. [20], in 2020, first studied the function of Gegenbauer polynomials (GP) in the following
H μ ( x , ξ ) = 1 1 2 x ξ + ξ 2 μ ,
where ξ U and x [ 1 , 1 ] . For fixed x, the function H μ is analytic in U , so it can be expanded in a Taylor series as
H μ ( x , ξ ) = n = 0 C n μ ( x ) ξ n ,
where C n μ ( x ) is the (GP) of degree n.
Obviously, H μ generates nothing when μ = 0 . Therefore, the generating of the (GP) is set to be
H 0 ( x , ξ ) = 1 log 1 2 x ξ + ξ 2 = n = 0 C n 0 ( x ) ξ n
for μ = 0 . Moreover, it is worth mentioning that normalization of μ greater than 1 / 2 is desirable [19]. (GP) can be defined
C n μ ( x ) = 1 n 2 x n + μ 1 C n 1 μ ( x ) n + 2 μ 2 C n 2 μ ( x ) ,
with the initial values
C 0 μ ( x ) = 1 , C 1 μ ( x ) = 2 μ x and C 2 μ ( x ) = 2 μ 1 + μ x 2 μ .
We note that for μ = 1 , we get the Chebyshev polynomials C n 1 ( x ) = C n ( x ) and for μ = 1 2 , we get the Legendre polynomials C n 0.5 ( x ) .
It is clear that the Rabotnov function Φ α , λ ( ξ ) does not belong to A . Thus, it is natural to consider the normalization of the Rabotnov function for α 0 and λ > 0 defined by
R α , λ ( ξ ) = ξ 1 1 + α Γ 1 + α Φ α , λ ( ξ 1 1 + α ) = ξ + n = 2 λ n 1 Γ 1 + α Γ 1 + α n ξ n , ξ U .
Geometric properties, including convexity, close-to-convexity and starlikeness, for the normalized Rabotnov function R α , λ ( ξ ) were recently investigated by Eker and Ece in [21].
We now consider the linear operator V α , λ : A A defined by
V α , λ f ( ξ ) = R α , λ ( ξ ) * f ( ξ ) = ξ + n = 2 λ n 1 Γ 1 + α Γ 1 + α n a n ξ n , ξ U ,
where α 0 and λ > 0 .
Numerous scholars have recently been investigating bi-univalent functions related to orthogonal polynomials [22,23,24,25,26]. As far as we are aware, there are few works papers on bi-univalent functions for the Gegenbauer polynomial.
Mainly motivated by the work of Ala Amourah [20], a subclass of Σ involving Rabotnov function associated with (GP) is introduced, and additionally, the bounds for the Taylor coefficients a 2 and a 3 and Fekete-Szegö problems are obtained.

2. Coefficient Bounds of the Class R Σ μ ( x , γ , α , δ , λ )

In this section, we begin defining associated Rabotnov functions, the new subclass R Σ μ ( x , γ , α , λ ) .
Definition 1.
Let f Σ given by (2) be said to be in the class R Σ μ ( x , γ , α , δ , λ ) if the following subordinations:
( 1 γ ) V α , λ f ( ξ ) ξ + γ V α , λ f ( ξ ) + δ ξ V α , λ f ( ξ ) H μ ( x , ξ )
and
( 1 γ ) V α , λ g ( w ) w + γ V α , λ g ( w ) + δ w V α , λ g ( w ) H μ ( x , w ) ,
where μ > 0 , α 0 , x ( 1 2 , 1 ] , λ > 0 , γ 0 , , and function g = f 1 is given by (3) and H μ is the generating function of the (GP) given by (4).
Example 1.
For δ = 0 , we have, R Σ μ ( x , γ , α , 0 , λ ) = H Σ μ ( x , γ , α , λ ) , in which H Σ μ ( x , γ , α , λ ) denotes the class of f Σ given by (2) and satisfying the condition
( 1 γ ) V α , λ f ( ξ ) ξ + γ V α , λ f ( ξ ) H μ ( x , ξ )
and
( 1 γ ) V α , λ g ( w ) w + γ V α , λ g ( w ) H μ ( x , ξ ) ,
where μ > 0 , x ( 1 2 , 1 ] , γ 0 , and function g = f 1 are given by (3), and H μ is the generating function of the (GP) given by (4).
Example 2.
For γ = 1 and δ = 0 , we have, R Σ μ ( x , 1 , α , 0 , λ ) = R Σ μ ( x , α , λ ) , in which R Σ μ ( x , α , λ ) denotes the class of f Σ given by (2) and satisfying the following condition
V α , λ f ( ξ ) H μ ( x , ξ )
and
V α , λ g ( w ) H μ ( x , ξ ) ,
where x ( 1 2 , 1 ] , μ > 0 , and function g = f 1 is given by (3) and H μ is the generating function of the (GP) given by (4).
Unless otherwise mentioned, we shall assume in this paper that λ , μ > 0 , γ , α 0 and x ( 1 2 , 1 ] .
First, we give the maximum value for a 2 and a 3 given in Definition 1.
Theorem 1.
Let f Σ given by (2) belong to the class R Σ μ ( x , γ , α , δ , λ ) . Then
a 2 2 μ Γ 2 1 + α x 2 Γ 3 1 + α x λ ϝ μ , γ , α , δ , λ x 2 + 1 + 2 γ + 2 δ 2 Γ 1 + α Γ 3 1 + α Γ 1 + α ,
and
a 3 4 μ 2 x 2 Γ 2 1 + α 2 λ 2 1 + γ + 2 δ 2 Γ 1 + α 2 + 2 μ x Γ 3 1 + α 1 + 2 γ + 6 δ λ 2 Γ 1 + α ,
where
ϝ μ , γ , α , δ = 4 μ 1 + 2 γ + 6 δ Γ 2 1 + α 2 2 ( 1 + μ ) 1 + 2 γ + 2 δ 2 Γ 1 + α Γ 3 1 + α .
Proof. 
From Definition 1 and f R Σ μ ( x , γ , α , δ , λ ) , for some regular functions φ , v such that φ ( 0 ) = 0 = v ( 0 ) and | φ ( ξ ) | < 1 , | v ( w ) | < 1 for all ξ , w U , then
( 1 γ ) V α , λ f ( ξ ) ξ + γ V α , λ f ( ξ ) + δ ξ V α , λ f ( ξ ) = H μ ( x , φ ( ξ ) )
and
( 1 γ ) V α , λ g ( w ) w + γ V α , λ g ( w ) + δ w V α , λ g ( w ) = H μ ( x , v ( w ) ) ,
From (16) and (17), we obtain
( 1 γ ) V α , λ f ( ξ ) ξ + γ V α , λ f ( ξ ) + δ ξ V α , λ f ( ξ ) = 1 + C 1 μ ( x ) c 1 ξ + C 1 μ ( x ) c 2 + C 2 μ ( x ) c 1 2 ξ 2 +
and
( 1 γ ) V α , λ g ( w ) w + γ V α , λ g ( w ) + δ w V α , λ g ( w ) = 1 + C 1 μ ( x ) d 1 w + C 1 μ ( x ) d 2 + C 2 μ ( x ) d 1 2 ) w 2 + .
It is well known
φ ( ξ ) = c 1 ξ + c 2 ξ 2 + c 3 ξ 3 + < 1 , ( ξ U )
and
v ( w ) = d 1 w + d 2 w 2 + d 3 w 3 + < 1 , ( w U ) ,
then
| c j | 1 and | d j | 1 for all j N .
Upon comparing the coefficients in (18) and (19), we have
1 + γ + 2 δ λ Γ 1 + α Γ 2 1 + α a 2 = C 1 μ ( x ) c 1 ,
1 + 2 γ + 6 δ λ 2 Γ 1 + α Γ 3 1 + α a 3 = C 1 μ ( x ) c 2 + C 2 μ ( x ) c 1 2 ,
1 + γ + 2 δ λ Γ 1 + α Γ 2 1 + α a 2 = C 1 μ ( x ) d 1 ,
and
1 + 2 γ + 6 δ λ 2 Γ 1 + α Γ 3 1 + α 2 a 2 2 a 3 = C 1 μ ( x ) d 2 + C 2 μ ( x ) d 1 2 .
It follows from (21) and (23) that
c 1 = d 1
and
2 1 + γ + 2 δ 2 λ 2 Γ 1 + α 2 Γ 2 1 + α 2 a 2 2 = C 1 μ ( x ) 2 c 1 2 + d 1 2 .
If we add (22) and (24), we get
2 1 + 2 γ + 6 δ λ 2 Γ 1 + α Γ 3 1 + α a 2 2 = C 1 μ ( x ) c 2 + d 2 + C 2 μ ( x ) c 1 2 + d 1 2 .
Substituting the value of c 1 2 + d 1 2 from (26) into (27), we deduce that
2 λ 2 Γ 1 + α 1 + 2 γ + 6 δ Γ 3 1 + α 1 + γ + 2 δ 2 Γ 1 + α Γ 2 1 + α 2 C 2 μ ( x ) C 1 μ ( x ) 2 a 2 2 = C 1 μ ( x ) c 2 + d 2 .
Moreover, using computations (19), (20) and (28), we find that
a 2 2 μ Γ 2 1 + α x Γ 3 1 + α x λ ϝ μ , γ , α , δ x 2 + 1 + 2 γ + 2 δ 2 Γ 1 + α Γ 3 1 + α Γ 1 + α .
Next, in order to find the bound on a 3 , by subtracting (24) from (22), we obtain
2 1 + 2 γ + 6 δ λ 2 Γ 1 + α Γ 3 1 + α a 3 a 2 2 = C 1 μ ( x ) c 2 d 2 + C 2 μ ( x ) c 1 2 d 1 2 .
Then, in view of (26) and (29), it becomes
a 3 = Γ 2 1 + α 2 C 1 μ ( x ) 2 2 λ 2 1 + γ + 2 δ 2 Γ 1 + α 2 c 1 2 + d 1 2 + C 1 μ ( x ) Γ 3 1 + α 2 1 + 2 γ + 6 δ λ 2 Γ 1 + α c 2 d 2 .
Thus applying (8), we conclude that
a 3 4 μ 2 x 2 Γ 2 1 + α 2 λ 2 1 + γ + 2 δ 2 Γ 1 + α 2 + 2 μ x Γ 3 1 + α 1 + 2 γ + 6 δ λ 2 Γ 1 + α .
The proof is complete. □

3. Fekete–Szegö Inequality

In this section, we prove a sharp bound of the Fekete and Szegö functional η a 2 2 a 3 [27], where function f belongs to the class R Σ μ ( x , γ , α , δ , λ ) .
Theorem 2.
Let f Σ given by (2) belong to class R Σ μ ( x , γ , α , δ , λ ) . Then
a 3 η a 2 2 2 Γ 3 1 + α μ x 1 + 2 γ + 6 δ λ 2 Γ 1 + α , η 1 Q μ , γ , α , δ 8 μ 2 x 3 Γ 3 1 + α Γ 2 1 + α 2 η 1 λ 2 Γ 1 + α L μ , γ , α , δ , λ , η 1 Q μ , γ , α , δ ,
where
L μ , γ , α , δ = 4 μ x 2 1 + 2 γ + 6 δ Γ 2 1 + α 2 1 + γ + 2 δ 2 Γ 1 + α Γ 3 1 + α 2 1 + μ x 2 1
and
Q μ , γ , α , δ = 1 1 + γ + 2 δ 2 2 1 + μ x 2 1 Γ 3 1 + α Γ 1 + α 4 μ x 2 1 + 2 γ + 6 δ Γ 2 1 + α 2 .
Proof. 
From (28) and (29) given by
a 3 η a 2 2 = 1 η C 1 μ ( x ) 3 c 2 + d 2 Γ 3 1 + α Γ 2 1 + α 2 2 λ 2 Γ 1 + α 1 + 2 γ + 6 δ Γ 2 1 + α 2 C 1 μ ( x ) 2 1 + γ + 2 δ 2 Γ 1 + α Γ 3 1 + α C 2 μ ( x ) + C 1 μ ( x ) Γ 3 1 + α 2 1 + 2 γ + 6 δ λ 2 Γ 1 + α c 2 d 2 = C 1 μ ( x ) h ( η ) + Γ 3 1 + α 2 1 + 2 γ + 6 δ λ 2 Γ 1 + α c 2 + C 1 μ ( x ) h ( η ) Γ 3 1 + α 2 1 + 2 γ + 6 δ λ 2 Γ 1 + α d 2 ,
where
h ( η ) = C 1 α ( x ) 2 Γ 3 1 + α Γ 2 1 + α 2 1 η 2 λ 2 Γ 1 + α 1 + 2 γ + 6 δ Γ 2 1 + α 2 C 1 μ ( x ) 2 1 + γ + 2 δ 2 Γ 1 + α Γ 3 1 + α C 2 μ ( x ) .
Then, in view of (8), we conclude that
a 3 η a 2 2 Γ 3 1 + α C 1 α ( x ) 1 + 2 γ + 6 δ λ 2 Γ 1 + α 2 C 1 μ ( x ) h ( η ) 0 h ( η ) Γ 3 1 + α 2 1 + 2 γ + 6 δ λ 2 Γ 1 + α , h ( η ) Γ 3 1 + α 2 1 + 2 γ + 6 δ λ 2 Γ 1 + α ,
the proof is complete 2. □

4. Corollaries and Consequences

Conformable essentially to Examples 1 and 2, Theorems 1 and 2 yield the following corollaries.
Corollary 1.
Let f Σ given by (2) belong to class H Σ μ ( x , γ , α , λ ) . Then
a 2 2 μ Γ 2 1 + α x 2 Γ 3 1 + α x λ ϝ μ , γ , α x 2 + 1 + 2 γ 2 Γ 1 + α Γ 3 1 + α Γ 1 + α
a 3 4 μ 2 x 2 Γ 2 1 + α 2 λ 2 1 + γ 2 Γ 1 + α 2 + 2 μ x Γ 3 1 + α 1 + 2 γ λ 2 Γ 1 + α ,
and
a 3 η a 2 2 2 Γ 3 1 + α μ x 1 + 2 γ λ 2 Γ 1 + α , η 1 Q μ , γ , α 8 μ 2 x 3 Γ 3 1 + α Γ 2 1 + α 2 η 1 λ 2 Γ 1 + α L μ , γ , α , 0 , λ , η 1 Q μ , γ , α ,
where
ϝ μ , γ , α = 4 μ 1 + 2 γ Γ 2 1 + α 2 2 ( 1 + μ ) 1 + 2 γ 2 Γ 1 + α Γ 3 1 + α ,
L μ , γ , α = 4 μ x 2 1 + 2 γ Γ 2 1 + α 2 1 + γ 2 Γ 1 + α Γ 3 1 + α 2 1 + μ x 2 1 ,
and
Q μ , γ , α = 1 1 + γ 2 2 1 + μ x 2 1 Γ 3 1 + α Γ 1 + α 4 μ x 2 1 + 2 γ Γ 2 1 + α 2 .
Corollary 2.
Let f Σ given by (2) belong to class G Σ μ ( x , α , λ ) . Then
a 2 2 μ Γ 2 1 + α x 2 Γ 3 1 + α x λ ϝ μ , 1 , α x 2 + 9 Γ 1 + α Γ 3 1 + α Γ 1 + α
a 3 μ 2 x 2 Γ 2 1 + α 2 λ 2 Γ 1 + α 2 + 2 μ x Γ 3 1 + α 3 λ 2 Γ 1 + α ,
and
a 3 η a 2 2 2 Γ 3 1 + α μ x 3 λ 2 Γ 1 + α , η 1 Q μ , 1 , α 8 μ 2 x 3 Γ 3 1 + α Γ 2 1 + α 2 η 1 λ 2 Γ 1 + α L μ , 1 , α , 0 , η 1 Q μ , 1 , α ,
where
ϝ μ , 1 , α = 12 μ Γ 2 1 + α 2 18 ( 1 + μ ) Γ 1 + α Γ 3 1 + α ,
L μ , 1 , α = 12 μ x 2 Γ 2 1 + α 2 4 Γ 1 + α Γ 3 1 + α 2 1 + μ x 2 1 ,
and
Q μ , 1 , α = 1 2 1 + μ x 2 1 Γ 3 1 + α Γ 1 + α 3 μ x 2 Γ 2 1 + α 2 .
Remark 1.
The results presented in this article would lead to various other new results for the classes R Σ 0.5 ( x , γ , α , δ , λ ) for Legendre polynomials, and R Σ 1 ( x , γ , α , δ , λ ) for Chebyshev polynomials.

5. Conclusions

In our study, a new class R Σ μ ( x , γ , α , δ , λ ) of normalized analytic functions and bi-univalent functions associated with the normalized Rabotnov function series was introduced. For functions belonging to this class, the estimates of the Taylor coefficients a 2 and a 3 and Fekete-Szegö functional problems were derived. This study could inspire researchers to introduce new classes of analytic and bi-univalent functions associated with the normalized Rabotnov function series.

Author Contributions

Conceptualization, A.A. and B.A.F.; methodology, A.A.; validation, K.R.A., A.A., B.A.F. and I.A.; formal analysis, A.A.; investigation, A.A., B.A.F. and I.A.; writing—original draft preparation, B.A.F. and A.A.; writing—review and editing, A.A. and K.R.A.; supervision, B.A.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

  1. Rabotnov, Y. Equilibrium of an Elastic Medium with After-Effect. Prikl. Mat. Mekhanika 1948, 12, 53–62. (in Russian); Reprinted in Fract. Calc. Appl. Anal. 2014, 17, 684–696. [Google Scholar] [CrossRef]
  2. Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
  3. Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
  4. Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
  5. Ahmad, M.; Frasin, B.; Murugusundaramoorthy, G.; Alkhazaleh, A. An application of Mittag-Leffler-type poisson distribution on certain subclasses of analytic functions associated with conic domains. Heliyon 2021, 7, e08109. [Google Scholar] [CrossRef] [PubMed]
  6. Garg, M.; Manohar, P.; Kalla, S.L. A Mittag-Leffler-type function of two variables. Integral Transforms Spec. Funct. 2013, 24, 934–944. [Google Scholar] [CrossRef]
  7. Ahmad, I.; Shah, S.G.A.; Hussain, S.; Darus, M.; Ahmad, B. Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials. J. Math. 2022, 2022, 2705203. [Google Scholar] [CrossRef]
  8. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
  9. Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
  10. Tan, D.L. Coefficient estimates for bi-univalent functions. Chinese. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
  11. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Appl. 1985, 3, 18–21. [Google Scholar]
  12. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  13. Srivastava, H.M.; Altınkaya, S.; Yalcın, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
  14. Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
  15. Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef] [Green Version]
  16. Amourah, A.; Frasin, B.A.; Swamy, S.R.; Sailaja, Y. Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activated function and k-Fibonacci numbers. J. Math. Computer Sci. 2022, 27, 105–117. [Google Scholar] [CrossRef]
  17. Legendre, A. Recherches sur Laattraction des Sphéroides Homogénes; Mémoires Présentes par Divers Savants a la Académie des Sciences de la Institut de France; Académie des Sciences de laInstitut de France: Paris, France, 1785; Volume 10, pp. 411–434. [Google Scholar]
  18. Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
  19. Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
  20. Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
  21. Eker, S.S.; Ece, S. Geometric properties of normalized Rabotnov function. Hacet. J. Math. Stat. 2022, 51, 1248–1259. [Google Scholar]
  22. Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
  23. Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacă, T. An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
  24. Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Mat. 2021, 32, 631–643. [Google Scholar] [CrossRef]
  25. Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalen Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 14, 2462. [Google Scholar] [CrossRef]
  26. Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
  27. Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Amourah, A.; Aldawish, I.; Alhindi, K.R.; Frasin, B.A. An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions. Axioms 2022, 11, 680. https://doi.org/10.3390/axioms11120680

AMA Style

Amourah A, Aldawish I, Alhindi KR, Frasin BA. An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions. Axioms. 2022; 11(12):680. https://doi.org/10.3390/axioms11120680

Chicago/Turabian Style

Amourah, Ala, Ibtisam Aldawish, Khadeejah Rasheed Alhindi, and Basem Aref Frasin. 2022. "An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions" Axioms 11, no. 12: 680. https://doi.org/10.3390/axioms11120680

APA Style

Amourah, A., Aldawish, I., Alhindi, K. R., & Frasin, B. A. (2022). An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions. Axioms, 11(12), 680. https://doi.org/10.3390/axioms11120680

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop