An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions
Abstract
:1. Introduction
2. Coefficient Bounds of the Class
3. Fekete–Szegö Inequality
4. Corollaries and Consequences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabotnov, Y. Equilibrium of an Elastic Medium with After-Effect. Prikl. Mat. Mekhanika 1948, 12, 53–62. (in Russian); Reprinted in Fract. Calc. Appl. Anal. 2014, 17, 684–696. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Frasin, B.; Murugusundaramoorthy, G.; Alkhazaleh, A. An application of Mittag-Leffler-type poisson distribution on certain subclasses of analytic functions associated with conic domains. Heliyon 2021, 7, e08109. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Manohar, P.; Kalla, S.L. A Mittag-Leffler-type function of two variables. Integral Transforms Spec. Funct. 2013, 24, 934–944. [Google Scholar] [CrossRef]
- Ahmad, I.; Shah, S.G.A.; Hussain, S.; Darus, M.; Ahmad, B. Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials. J. Math. 2022, 2022, 2705203. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chinese. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Appl. 1985, 3, 18–21. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Altınkaya, S.; Yalcın, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Frasin, B.A.; Swamy, S.R.; Sailaja, Y. Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activated function and k-Fibonacci numbers. J. Math. Computer Sci. 2022, 27, 105–117. [Google Scholar] [CrossRef]
- Legendre, A. Recherches sur Laattraction des Sphéroides Homogénes; Mémoires Présentes par Divers Savants a la Académie des Sciences de la Institut de France; Académie des Sciences de laInstitut de France: Paris, France, 1785; Volume 10, pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Eker, S.S.; Ece, S. Geometric properties of normalized Rabotnov function. Hacet. J. Math. Stat. 2022, 51, 1248–1259. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacă, T. An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Mat. 2021, 32, 631–643. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalen Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 14, 2462. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amourah, A.; Aldawish, I.; Alhindi, K.R.; Frasin, B.A. An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions. Axioms 2022, 11, 680. https://doi.org/10.3390/axioms11120680
Amourah A, Aldawish I, Alhindi KR, Frasin BA. An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions. Axioms. 2022; 11(12):680. https://doi.org/10.3390/axioms11120680
Chicago/Turabian StyleAmourah, Ala, Ibtisam Aldawish, Khadeejah Rasheed Alhindi, and Basem Aref Frasin. 2022. "An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions" Axioms 11, no. 12: 680. https://doi.org/10.3390/axioms11120680