Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator
Abstract
:1. Introduction
Some Higher Transcendental Functions and Related Mittag-Leffler Functions
2. Definitions and Preliminaries
3. Fekete–Szegö Inequalities for the Class
4. Subordination Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ayub, U.; Mubeen, S.; Abdeljawad, T.; Rahman, G.; Nisar, K.S. The new Mittag-Leffler function and its applications. J. Math. 2020, 2020, 2463782. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag-Leffler type functions. Integral Transform. Spec. Funct. 1998, 7, 215–224. [Google Scholar]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2022, 6, 54. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Alomari, A.-K.N.; Saad, K.M.; Hamanah, W.M. Some Dynamical models involving fractional-order derivatives with the Mittag-Leffler type kernels and their applications based upon the Legendre spectral collocation method. Fractal Fract. 2021, 5, 131. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some new fractional-calculus connections between Mittag–Leffler functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bansal, M.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Methods Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kilicman, A.; Zainab, A.E.; Ibrahim, A.E. Generalized convolution properties based on the modified Mittag-Leffler function. J. Nonlinear Sci. Appl. 2017, 10, 4284–4294. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Aliev, N.A.; Mammadova, G.H.; Aliev, F. A Some remarks on the paper, entitled “Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. TWMS J. Pure Appl. Math. 2017, 8, 112–114. [Google Scholar]
- Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of integral operators involving Mittag-Leffler functions. Appl. Math. Inf. Sci. 2017, 11, 635–641. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey). TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Srivastava, H.M. On an extension of the Mittag-Leffler function. Yokohama Math. J. 1968, 16, 77–88. [Google Scholar]
- Srivastava, H.M. Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discret. Math. 2007, 1, 56–71. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK, 1985. [Google Scholar]
- Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-Functions of One and Two Variables; South Asian Publishers Pvt. Ltd.: New Delhi, India, 1982. [Google Scholar]
- Lin, S.-D.; Srivastava, H.M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
- Srivastava, H.M. Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta functions. SpringerPlus 2013, 2, 67. [Google Scholar]
- Srivastava, H.M.; Jankov, D.; Pogány, T.K.; Saxena, R.K. Two-sided inequalities for the extended Hurwitz-Lerch zeta function. Comput. Math. Appl. 2011, 62, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Răducanu, D.; Srivastava, H.M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 2007, 18, 933–943. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O. Certain inequalities of meromorphic univalent functions associated with the Mittag-Leffler function. J. Appl. Anal. 2019, 25, 173–178. [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-L. New applications of the Srivastava–Tomovski generalization of the Mittag-Leffler function. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 519–524. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Cang, Y.-L.; Liu, J.-L. A family of multivalent analytic functions associated with Srivastava–Tomovski generalization of the Mittag-Leffler function. Filomat 2018, 32, 4619–4625. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Reddy, K.A.; Murugusundaramoorthy, G. On classes of Janowski functions associated with a conic domain. Ital. J. Pure Appl. Math. 2022, 47, 684–698. [Google Scholar]
- Reddy, K.A.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Inequalities for the Taylor coefficients of spiralike functions involving q-differential operator. Eur. J. Pure Appl. Math. 2019, 12, 846–856. [Google Scholar] [CrossRef]
- Breaz, D.; Karthikeyan, K.R.; Umadevi, E. Subclasses of Multivalent Meromorphic functions with a pole of order p at the origin. Mathematics 2022, 10, 600. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. On certain subclasses of analytic functions involving differential operator. Jnãnãbha 2018, 48, 55–64. [Google Scholar]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent prestarlike functions with respect to symmetric points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Lakshmi, S.; Varadharajan, S.; Mohankumar, D.; Umadevi, E. Starlike functions of complex order with respect to symmetric points defined using higher order derivatives. Fractal Fract. 2022, 6, 116. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic Ddmain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z.; Tahir, M. A generalized conic domain and its applications to certain subclasses of analytic functions. Rocky Mt. J. Math. 2019, 49, 2325–2346. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of spiral-like close-to-convex functions associated with conic domains. Mathematics 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-Starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Goyal, S.P.; Goswami, P. On sufficient conditions for analytic functions to be Bazilevič. Complex Var. Elliptic Equ. 2009, 54, 485–492. [Google Scholar] [CrossRef]
- Bazilevič, I.E. On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. 1955, 37, 471–476. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Güney, H.Ö. New families of bi-univalent functions associated with the Bazilevič functions and the λ-pseudo-starlike functions. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
- Wanas, A.K.; Srivastava, H.M. Differential sandwich theorems for Bazilevič function defined by convolution structure. Turk. J. Ineq. 2020, 4, 10–21. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Conf. Proc. Lecture Notes Anal., Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Koepf, W. On the Fekete-Szegö problem for close-to-convex functions. Proc. Am. Math. Soc. 1987, 101, 89–95. [Google Scholar]
- Kuroki, K.; Owa, S. Notes on new class for certain analytic functions. RIMS Kokyuroku 2011, 1772, 21–25. [Google Scholar]
- Sim, Y.J.; Kwon, O.S. Notes on analytic functions with a bounded positive real part. J. Inequal. Appl. 2013, 2013, 370. [Google Scholar] [CrossRef] [Green Version]
- Tu, Z.; Xiong, L. Unified solution of Fekete-Szegö problem for subclasses of starlike mappings in several complex variables . Math. Slovaca 2019, 69, 843–856. [Google Scholar] [CrossRef]
- Breaz, D.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Bazilevič functions of complex order with respect to symmetric points. Fractal Fract. 2022, 6, 316. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Karthikeyan, K.R.; Umadevi, E.; Senguttuvan, A. Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator. Axioms 2022, 11, 687. https://doi.org/10.3390/axioms11120687
Breaz D, Karthikeyan KR, Umadevi E, Senguttuvan A. Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator. Axioms. 2022; 11(12):687. https://doi.org/10.3390/axioms11120687
Chicago/Turabian StyleBreaz, Daniel, Kadhavoor R. Karthikeyan, Elangho Umadevi, and Alagiriswamy Senguttuvan. 2022. "Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator" Axioms 11, no. 12: 687. https://doi.org/10.3390/axioms11120687
APA StyleBreaz, D., Karthikeyan, K. R., Umadevi, E., & Senguttuvan, A. (2022). Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator. Axioms, 11(12), 687. https://doi.org/10.3390/axioms11120687