Improving the Accuracy of Forecasting Models Using the Modified Model of Single-Valued Neutrosophic Hesitant Fuzzy Time Series
Abstract
:1. Introduction
2. Definitions and Methodology
2.1. Definitions
- when,is better than, as shown by.
- when,is equivalent to, as shown by.
2.2. Proposed Model
- In the initial time , is defined on actual value
- If , verify the NLRG of this as:
- If NLRG of is empty, the is the average value of the midpoint of .
- If NLRG of is one-to-one, the is the average value of the midpoint of .
- If NLRG of is one-to-many, the is the average of the midpoint of based on the following formula:
Algorithm 1. Pseudo code for the GBMF-SVNHFTS technique. |
Determine the UOD of sample data Define the length of the partition () and the fuzzy numbers (). For to For to First partition method using TFN and GFN. Compute . Second partition method using TPFN and BSFN. Compute . Calculate the weights () of the first and second partition methods. Combine all two-partition methods into one SVNHFS by using SVNHFWG Calculate the cosine measures and select the maximum value to be the neutrosophic value. End for End for Establishing neutrosophic logical relationship groups (NLRGs) → Applying the deneutrosophication process to generate the predicted values. |
3. Data and Experimental Results
3.1. Forecasting the University of Alabama’s Student Enrollments
3.2. Forecasting the Daily Closing Prices of Cryptocurrencies
4. A Forecasting Performance Comparison between the Proposed GBMF-SVNHFTS Method and Other FTS Techniques
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lahmiri, S.; Bekiros, S. Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Solitons Fractals 2019, 118, 35–40. [Google Scholar] [CrossRef]
- Nakamoto, S.; Bitcoin, A. A Peer-To-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 8 July 2022).
- Taskinsoy, J. Bitcoin Could Be the First Cryptocurrency to Reach a Market Capitalization of One Trillion Dollars. Available online: https://ssrn.com/abstract=3693765 (accessed on 8 July 2022).
- Valencia, F.; Gómez-Espinosa, A.; Valdés-Aguirre, B. Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy 2019, 21, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Q.; Zhang, D.; Wu, B.; Leung, S.C. A novel stock forecasting model based on fuzzy time series and genetic algorithm. Procedia Comput. Sci. 2013, 18, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Garg, S. Autoregressive integrated moving average model-based prediction of bitcoin close price. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018; pp. 473–478. [Google Scholar]
- Yamak, P.T.; Yujian, L.; Gadosey, P.K. A comparison between Arima, lstm, and gru for time series forecasting. In Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 20–22 December 2019; pp. 49–55. [Google Scholar]
- Wirawan, I.M.; Widiyaningtyas, T.; Hasan, M.M. Short term prediction on bitcoin price using ARIMA method. In Proceedings of the International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 21–22 September 2019; pp. 260–265. [Google Scholar]
- Derbentsev, V.; Datsenko, N.; Stepanenko, O.; Bezkorovainyi, V. Forecasting cryptocurrency prices time series using machine learning approach. SHS Web Conf. 2019, 65, 02001. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.; Corinna, C. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1996; pp. 394–432. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Zupan, J. Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chim. Slov. 1994, 41, 327. [Google Scholar]
- McNally, S. Predicting the Price of Bitcoin Using Machine Learning. Ph.D. Thesis, National College of Ireland, Dublin, Ireland, 2016. [Google Scholar]
- Lee, L.W.; Wang, L.H.; Chen, S.M. Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques. Expert Syst. Appl. 2008, 34, 328–336. [Google Scholar] [CrossRef]
- Chen, S.M.; Hwang, J.R. Temperature prediction using fuzzy time series. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2000, 30, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Vamitha, V.; Jeyanthi, M.; Rajaram, S.; Revathi, T. Temperature prediction using fuzzy time series and multivariate Markov chain. Int. J. Fuzzy Math. Syst. 2012, 3, 217–230. [Google Scholar]
- Song, Q.; Chissom, B.S. Forecasting enrollments with fuzzy time series—Part I. Fuzzy Sets Syst. 1993, 54, 1–9. [Google Scholar] [CrossRef]
- Chen, S.M. A new method to forecast enrollments using fuzzy time series. Int. J. Appl. Sci. Eng. 2004, 2, 234–244. [Google Scholar]
- Huarng, K. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Syst. 2001, 123, 387–394. [Google Scholar] [CrossRef]
- Chen, S.M. Forecasting enrollments based on high-order fuzzy time series. Cybern. Syst. 2002, 33, 1–16. [Google Scholar] [CrossRef]
- Yu, H.K. A refined fuzzy time-series model for forecasting. Phys. A Stat. Mech. Its Appl. 2005, 346, 657–681. [Google Scholar] [CrossRef]
- Liu, H.T. An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers. Fuzzy Optim. Decis. Mak. 2007, 6, 63–80. [Google Scholar] [CrossRef]
- Pattanayak, R.M.; Behera, H.S.; Panigrahi, S. A non-probabilistic neutrosophic entropy-based method for high-order fuzzy time-series forecasting. Arab. J. Sci. Eng. 2022, 47, 1399–1421. [Google Scholar] [CrossRef]
- Singh, P.; Huang, Y.P. A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm. Comput. Ind. 2019, 111, 121–139. [Google Scholar] [CrossRef]
- Pant, M.; Kumar, S. Fuzzy time series forecasting based on hesitant fuzzy sets, particle swarm optimization and support vector machine-based hybrid method. Granul. Comput. 2022, 7, 861–879. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Joshi, B.P.; Kumar, S. Intuitionistic fuzzy sets based method for fuzzy time series forecasting. Cybern. Syst. 2012, 43, 34–47. [Google Scholar] [CrossRef]
- Torra, V.; Narukawa, Y. On hesitant fuzzy sets and decision. In Proceedings of the IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009; pp. 1378–1382. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.; Xia, M. Dual hesitant fuzzy sets. J. Appl. Math. 2012, 2012, 879629. [Google Scholar] [CrossRef] [Green Version]
- Bisht, K.; Kumar, S. Fuzzy time series forecasting method based on hesitant fuzzy sets. Expert Syst. Appl. 2016, 64, 557–568. [Google Scholar] [CrossRef]
- Smarandache, F. A unifying field in Logics: Neutrosophic Logic. In Philosophy; American Research Press: Santa Fe, NM, USA, 1999; pp. 1–141. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single Valued Neutrosophic Sets; Infinite Study: Coimbatore, India, 2010. [Google Scholar]
- Abdel-Basset, M.; Chang, V.; Mohamed, M.; Smarandache, F. A refined approach for forecasting based on neutrosophic time series. Symmetry 2019, 11, 457. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. J. Intell. Syst. 2015, 24, 23–36. [Google Scholar] [CrossRef]
- Tanuwijaya, B.; Selvachandran, G.; Abdel-Basset, M.; Huynh, H.X.; Pham, V.H.; Ismail, M. A novel single valued neutrosophic hesitant fuzzy time series model: Applications in Indonesian and Argentinian stock index forecasting. IEEE Access 2020, 8, 60126–60141. [Google Scholar] [CrossRef]
- Vaidya, A.V.; Metkewar, P.S.; Naik, S.A. A new paradigm for generation of fuzzy membership function. In Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), Greater Noida, India, 14–15 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Maturo, F.; Fortuna, F. Bell-shaped fuzzy numbers associated with the normal curve. In Topics on Methodological and Applied Statistical Inference; Springer: Cham, Switzerland, 2016; pp. 131–144. [Google Scholar]
- Reddy, C.S.; Raju, K.V. An Improved Fuzzy Approach for COCOMO’s Effort Estimation Using Gaussian Membership Function. J. Softw. 2009, 4, 452–459. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy Set Theory—And Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Giachetti, R.E.; Young, R.E. A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets Syst. 1997, 91, 185–202. [Google Scholar] [CrossRef]
- Zhao, J.; Bose, B.K. Evaluation of membership functions for fuzzy logic controlled induction motor drive. In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, Seville, Spain, 5–8 November 2002; Volume 1, pp. 229–234. [Google Scholar]
- Gupta, K.K.; Kumar, S. Hesitant probabilistic fuzzy set based time series forecasting method. Granul. Comput. 2019, 4, 739–758. [Google Scholar] [CrossRef]
- Pattanayak, R.M.; Panigrahi, S.; Behera, H.S. High-order fuzzy time series forecasting by using membership values along with data and support vector machine. Arab. J. Sci. Eng. 2020, 12, 10311–10325. [Google Scholar] [CrossRef]
- Gautam, S.S.; Singh, S.R. A modified weighted method of time series forecasting in intuitionistic fuzzy environment. Opsearch 2020, 57, 1022–1041. [Google Scholar] [CrossRef]
- Sugeno, M. An introductory survey of fuzzy control. Inf. Sci. 1985, 36, 59–83. [Google Scholar] [CrossRef]
- Yamaka, W.; Sriboonchitta, S. Forecasting Using Information and Entropy Based on Belief Functions. Complexity 2020, 2020, 3269647. [Google Scholar] [CrossRef]
- Maneejuk, P.; Pirabun, N.; Singjai, S.; Yamaka, W. Currency Hedging Strategies Using Histogram-Valued Data: Bivariate Markov Switching GARCH Models. Mathematics 2021, 9, 2773. [Google Scholar] [CrossRef]
Year | Actual | Gupta and Kumar | Abdel-basset, et al. | Tanuwijaya, et al. | Pattanayak et al. | Gautam et al. | Pant and Kumar | GBMF-SVNHFTS |
---|---|---|---|---|---|---|---|---|
1971 | 13,055 | 13,055 | 13,055 | 13,055 | 13,055 | 13,055 | 13,055 | 13,055 |
1972 | 13,563 | 13,680.75 | 13,650 | 13,560 | 13,637 | 13,423 | 14,116.78 | 13,584 |
1973 | 13,867 | 13,844.43 | 13,950 | 13,860 | 14,120 | 13,668 | 14,495.2 | 13,784 |
1974 | 14,696 | 14,951.36 | 14,850 | 14,760 | 14,408 | 14,648 | 15,252.34 | 14,584 |
1975 | 15,460 | 15,532.34 | 15,450 | 15,360 | 15,195 | 15,383 | 15,629.45 | 15,384 |
1976 | 15,311 | 15,533.19 | 15,450 | 15,560 | 15,712 | 15,309 | 15,630.49 | 15,384 |
1977 | 15,603 | 15,533.19 | 15,450 | 15,560 | 15,635 | 15,546 | 15,630.62 | 15,384 |
1978 | 15,861 | 15,533.19 | 15,450 | 15,510 | 15,786 | 15,309 | 16,008.66 | 15,784 |
1979 | 16,807 | 16,298.77 | 16,950 | 16,860 | 15,918 | 16,748 | 16,765.52 | 16,784 |
1980 | 16,919 | 17,113.79 | 17,150 | 17,060 | 16,406 | 17,178 | 16,764.74 | 17,584 |
1981 | 16,388 | 17,113.79 | 17,150 | 17,060 | 16,466 | 17,178 | 16,386.18 | 16,384 |
1982 | 15,433 | 16,298.77 | 15,450 | 15,360 | 16,190 | 15,383 | 15,629.64 | 15,384 |
1983 | 15,497 | 15,533.19 | 15,450 | 15,560 | 15,698 | 15,309 | 15,629.33 | 15,384 |
1984 | 15,145 | 15,533.19 | 15,450 | 15,510 | 15,731 | 15,309 | 15,252.47 | 15,384 |
1985 | 15,163 | 15,532.34 | 15,600 | 15,510 | 15,550 | 15,546 | 15,252.6 | 15,584 |
1986 | 15,984 | 15,532.34 | 15,600 | 15,510 | 15,559 | 15,546 | 16,007.97 | 15,584 |
1987 | 16,859 | 16,298.77 | 16,950 | 16,860 | 15,982 | 16,748 | 16,765.16 | 16,784 |
1988 | 18,150 | 17,113.79 | 17,150 | 17,060 | 16,433 | 17,178 | 17,521.8 | 17,584 |
1989 | 18,970 | 18,741.35 | 19,050 | 18,960 | 17,366 | 18,962 | 18,277.4 | 18,984 |
1990 | 19,328 | 19,190.44 | 19,350 | 19,260 | 17,967 | 19,208 | 18,656.25 | 19,384 |
1991 | 19,337 | 18,972.15 | 19,050 | 19,110 | 18,230 | 19,208 | 18,656.14 | 19,084 |
1992 | 18,876 | 18,972.15 | 19,050 | 19,110 | 18,236 | 18,593 | 18,278.09 | 19,084 |
No. | Loss Function | Gupta and Kumar | Abdel-Basset, et al. | Tanuwijaya, et al. | Pattanayak et al. | Gautam et al. | Pant and Kumar | GBMF-SVNHFTS |
---|---|---|---|---|---|---|---|---|
1 | RMSE | 431.6441 | 342.6880 | 342.4142 | 771.9586 | 347.8933 | 403.6428 | 255.7675 |
2 | MAPE | 2.0390 | 1.4477 | 1.3282 | 3.4617 | 1.4563 | 1.8700 | 1.0812 |
3 | MAE | 335.7829 | 238.9048 | 220.7143 | 596.6667 | 239.4762 | 310.2510 | 178.4286 |
Code | Cryptocurrency | Minimum | Maximum | Mean | SD |
---|---|---|---|---|---|
BTC 1 | Bitcoin | 3154.95 | 67,566.828 | 19,438.948 | 17,559.793 |
ETH 2 | Ethereum | 84.308296 | 4812.0874 | 1099.7384 | 1244.7025 |
BNB 3 | Binance Coin | 4.33615 | 675.6841 | 135.5693 | 187.8482 |
ADA 2 | Cardano | 0.023961 | 2.96,8239 | 0.498853 | 0.655996 |
SOL 4 | Solana | 0.515273 | 258.9343 | 56.09372 | 66.25342 |
XRP 2 | Ripple | 0.139635 | 3.37781 | 0.538938 | 0.380388 |
DOT 6 | Polkadot | 2.875028 | 53.88173 | 21.28313 | 12.51053 |
MATIC 4 | Polygon | 0.003141 | 2.876757 | 0.552638 | 0.728662 |
DOGE 2 | Dogecoin | 0.001038 | 0.684777 | 0.059302 | 0.103257 |
LTC 1 | Litecoin | 23.46433 | 386.4508 | 103.5294 | 64.65184 |
Index | Model | RMSE | MAPE | MAE |
---|---|---|---|---|
BTC | GBMF-SVNHFTS | 1148.676 | 0.017 | 1.723 |
Sugeno-ANFIS | 4900.229 | 0.050 | 4.964 | |
ARIMA (3,2,3) | 1700.625 | 0.029 | 2.876 | |
LSTM | 2614.332 | 0.047 | 4.668 | |
ETH | GBMF-SVNHFTS | 92.979 | 0.021 | 2.058 |
Sugeno-ANFIS | 386.704 | 0.094 | 9.355 | |
ARIMA (1,1,1) | 139.652 | 0.038 | 3.759 | |
LSTM | 367.153 | 0.084 | 8.357 | |
BNB | GBMF-SVNHFTS | 12.274 | 0.019 | 1.921 |
Sugeno-ANFIS | 112.046 | 0.232 | 23.167 | |
ARIMA (2,2,2) | 22.240 | 0.039 | 3.929 | |
LSTM | 46.114 | 0.097 | 9.680 | |
ADA | GBMF-SVNHFTS | 0.060 | 0.030 | 3.016 |
Sugeno-ANFIS | 0.395 | 0.127 | 12.673 | |
ARIMA (2,0,1) | 0.087 | 0.044 | 4.373 | |
LSTM | 0.338 | 0.147 | 14.702 | |
XRP | GBMF-SVNHFTS | 0.056 | 0.044 | 4.433 |
Sugeno-ANFIS | 0.074 | 0.055 | 5.480 | |
ARIMA (4,0,4) | 0.063 | 0.044 | 4.377 | |
LSTM | 0.074 | 0.052 | 5.209 | |
DOGE | GBMF-SVNHFTS | 0.007 | 0.011 | 1.138 |
Sugeno-ANFIS | 0.135 | 0.622 | 62.168 | |
ARIMA (2,1,2) | 0.022 | 0.052 | 5.178 | |
LSTM | 0.101 | 0.257 | 25.732 | |
LTC | GBMF-SVNHFTS | 8.441 | 0.035 | 3.474 |
Sugeno-ANFIS | 11.426 | 0.043 | 4.348 | |
ARIMA (2,1,2) | 10.858 | 0.041 | 4.099 | |
LSTM | 12.014 | 0.043 | 4.300 | |
SOL | GBMF-SVNHFTS | 4.263 | 0.028 | 2.804 |
Sugeno-ANFIS | 9.418 | 0.085 | 8.455 | |
ARIMA (2,1,2) | 7.004 | 0.048 | 4.757 | |
LSTM | 12.919 | 0.065 | 6.475 | |
DOT | GBMF-SVNHFTS | 1.422 | 3.841 | 1.037 |
Sugeno-ANFIS | 2.509 | 7.428 | 1.701 | |
ARIMA (2,1,2) | 1.665 | 4.428 | 1.196 | |
LSTM | 2.077 | 5.240 | 1.478 | |
MATIC | GBMF-SVNHFTS | 0.072 | 0.037 | 3.705 |
Sugeno-ANFIS | 0.524 | 0.172 | 17.186 | |
ARIMA (2,1,2) | 0.095 | 0.049 | 4.869 | |
LSTM | 0.153 | 0.062 | 6.191 |
Models | BTC | ETH | BNB | ADA | XRP | DOGE | LTC | SOL | DOT | MATIC |
---|---|---|---|---|---|---|---|---|---|---|
N | 1779 | 1695 | 1656 | 1695 | 1695 | 1695 | 1779 | 812 | 579 | 1160 |
GBMF-SVNHFTS | 51 | 52 | 55 | 41 | 38 | 94 | 40 | 23 | 20 | 36 |
Sugeno-ANFIS | 65 | 56 | 89 | 64 | 54 | 50 | 49 | 54 | 52 | 42 |
ARIMA | 124 | 62 | 58 | 65 | 93 | 52 | 87 | 76 | 87 | 93 |
LSTM | 187 | 151 | 150 | 185 | 150 | 207 | 162 | 64 | 49 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantachang, K.; Tansuchat, R.; Yamaka, W. Improving the Accuracy of Forecasting Models Using the Modified Model of Single-Valued Neutrosophic Hesitant Fuzzy Time Series. Axioms 2022, 11, 527. https://doi.org/10.3390/axioms11100527
Pantachang K, Tansuchat R, Yamaka W. Improving the Accuracy of Forecasting Models Using the Modified Model of Single-Valued Neutrosophic Hesitant Fuzzy Time Series. Axioms. 2022; 11(10):527. https://doi.org/10.3390/axioms11100527
Chicago/Turabian StylePantachang, Kittikun, Roengchai Tansuchat, and Woraphon Yamaka. 2022. "Improving the Accuracy of Forecasting Models Using the Modified Model of Single-Valued Neutrosophic Hesitant Fuzzy Time Series" Axioms 11, no. 10: 527. https://doi.org/10.3390/axioms11100527
APA StylePantachang, K., Tansuchat, R., & Yamaka, W. (2022). Improving the Accuracy of Forecasting Models Using the Modified Model of Single-Valued Neutrosophic Hesitant Fuzzy Time Series. Axioms, 11(10), 527. https://doi.org/10.3390/axioms11100527