Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach
Abstract
1. Introduction
2. Homothetic Symmetry Equations
2.1. Four HVFs
2.2. Four KVFs
2.3. Seven KVFs
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einsteins Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hall, G.S. Symmetries and Curvature Structure in General Relativity; World Scientific: London, UK, 2004. [Google Scholar]
- Qadir, A.; Ziad, M. Classification of Static Cylindrically Symmetric Space-Times. Il. Nuov. Cim. B 1995, 110, 277–290. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Qadir, A. Symmetries of Static Spherically Symmetric Space-Times. J. Math. Phys. 1987, 28, 1019–1022. [Google Scholar] [CrossRef]
- Feroze, T.; Qadir, A.; Zaid, M. The Classification of Plane Symmetric Spacetimes by Isometries. J. Math. Phys. 2001, 42, 4947–4955. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Karim, M.; Al-Sheikh, D.N.; Zaman, F.D. Circularly Symmetric Static Metric in Three Dimensions and its Killing Symmetry. Int. J. Theor. Phys. 2008, 47, 2672–2678. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, T.; Bokhari, A.H.; Khan, G.A. Conformal Killing Vectors of Plane Symmetric Four Dimensional Lorentzian Manifolds. Eur. Phys. J. C 2015, 75, 523–531. [Google Scholar] [CrossRef]
- Kramer, D.; Carot, J. Conformal Symmetry of Perfect Fluids in General Relativity. J. Math. Phys. 1991, 32, 1857–1860. [Google Scholar] [CrossRef]
- Chrobok, T.; Borzeszkowski, H.H. Thermodinamical Equilibrium and Spacetime Geometry. Gen. Rel. Grav. 2006, 38, 397–415. [Google Scholar] [CrossRef]
- Mak, M.K.; Harko, T. Quark Stars Admitting a One-parameter Group of Conformal Motions. Int. J. Mod. Phys. D 2004, 13, 149–156. [Google Scholar] [CrossRef]
- Moopanar, S.; Maharaj, S.D. Conformal Symmetries of Spherical Spacetimes. Int. J. Theor. Phys. 2010, 49, 1878–1885. [Google Scholar] [CrossRef][Green Version]
- Maartens, R.; Maharaj, S.D.; Tupper, B.O.J. General Solution and Classification of Conformal Motions in Static Spherical Spacetimes. Class. Quant. Grav. 1995, 12, 2577–2586. [Google Scholar] [CrossRef]
- Hall, G.S.; Carot, J. Conformal Symmetries in Null Einstein-Maxwell Fields. Class. Quant. Grav. 1994, 11, 475–480. [Google Scholar] [CrossRef]
- Maartens, R.; Maharaj, S.D. Conformal Symmetries of pp-waves. Class. Quant. Grav. 1991, 8, 503–514. [Google Scholar] [CrossRef]
- Hussain, T.; Nasib, U.; Khan, F.; Farhan, M. An Efficient Rif Algorithm for the Classification of Kantowski-Sachs Spacetimes via Conformal Vector Fields. J. Kor. Phys. Soc. 2020, 76, 286–291. [Google Scholar] [CrossRef]
- Hussain, T.; Nasib, U.; Farhan, M.; Bokhari, A.H. A study of Energy Conditions in Kantowski-Sachs Spacetimes via Homothetic Vector Fields. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Hussain, T.; Khan, J.; Nasib, U. Proper Homothetic Vector Fields of Bianchi Type I Spacetimes via Rif Tree Approach. Resul. Phys. 2021, 25, 104299. [Google Scholar] [CrossRef]
- Shabbir, G.; Ramzan, M. Classification of Cylindrically Symmetric Static Spacetimes According to Their Proper Homothetic vector Fields. Appl. Sci. 2007, 9, 148–154. [Google Scholar]
- Reid, G.J.; Wittkope, A.D.; Boulton, A. Reduction of Systems of Nonlinear Partial Differential Equations to Simplified Involutive Forms. Euro. J. Appl. Math. 1996, 7, 635–666. [Google Scholar] [CrossRef]

| No. | Metric | Proper HVF | |
|---|---|---|---|
| 4a. | |||
| (Branch 1) | |||
| 4b. | |||
| (Branch 1) | |||
| 4c. | |||
| (Branch 1) | |||
| 4d. | |||
| (Branch 1) | |||
| 4e. | |||
| (Branch 5) | |||
| 4f. | |||
| (Branch 5) | |||
| 4g. | |||
| (Branch 6) | |||
| 4h. | |||
| (Branch 10) | |||
| 4i. | |||
| (Branch 10) | |||
| 4j. | |||
| (Branch 15) | |||
| 4k. | |||
| (Branch 15) | |||
| 4l. | |||
| (Branch 16) | 
| No. | Metric | Vector Field Components | Additional KVFs | 
|---|---|---|---|
| 4(i). | |||
| (Branch 4) | |||
| where | |||
| 4(ii). | |||
| (Branch 8) | |||
| where | |||
| 4(iii). | |||
| (Branch 13) | |||
| where | |||
| 4(iv). | |||
| (Branch 19) | |||
| where | 
| No. | Metric | Vector Field Components | Additional KVFs | 
|---|---|---|---|
| 7a. | |||
| (Branch 9) | |||
| , | |||
| where | |||
| No. | Metric | Vector Field Components | Additional KVFs | 
|---|---|---|---|
| 7b. | |||
| (Branch 14) | |||
| , | |||
| where | |||
| No. | Metric | Vector Field Components | Additional KVFs | 
|---|---|---|---|
| 7c. | |||
| (Branch 20) | |||
| , | |||
| where | |||
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, J.; Hussain, T.; Santina, D.; Mlaiki, N. Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms 2022, 11, 506. https://doi.org/10.3390/axioms11100506
Khan J, Hussain T, Santina D, Mlaiki N. Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms. 2022; 11(10):506. https://doi.org/10.3390/axioms11100506
Chicago/Turabian StyleKhan, Jamshed, Tahir Hussain, Dania Santina, and Nabil Mlaiki. 2022. "Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach" Axioms 11, no. 10: 506. https://doi.org/10.3390/axioms11100506
APA StyleKhan, J., Hussain, T., Santina, D., & Mlaiki, N. (2022). Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms, 11(10), 506. https://doi.org/10.3390/axioms11100506
 
        




 
       