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Abstract: In this paper, we find all static, cylindrically symmetric spacetime metrics admitting
homothetic symmetries. For this purpose, first we analyze the homothetic symmetry equations by
an algorithm developed in Maple which gives all possible static, cylindrically symmetric metrics
that may possess proper homothetic symmetry. After that, we have solved the homothetic symmetry
equations for all these metrics to get the final form of homothetic symmetry vector fields. Comparing
the obtained results with those of direct integration technique, it is observed that the Rif tree approach
not only recovers the metrics already found by direct integration technique, but it also produces some
new metrics.
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1. Introduction

The theory of general relativity was presented by Albert Einstein in 1915, and until
now it has been considered as a widely accepted theory among all the existing theories of
gravitation. This theory gives a generalization of the special theory of relativity, which is
another scientific theory presented by Einstein in 1905 giving a relationship between space
and time. Moreover, general relativity refines Newton’s law of universal gravitation and
treats gravity as a warping of spacetime rather than a force that attracts objects toward
each other. The warping of spacetime, known as curvature, is because of the presence of
matter in the spacetime. The curvature of a spacetime is given by a tensor quantity, called
an Einstein tensor, and it is denoted by Gab. In terms of metric tensor gab, Ricci tensor Rab,
and the Ricci scalar R, the Einstein tensor can be expressed as Gab = Rab − 1

2 Rgab. The
distribution of matter and energy in a spacetime is given by energy-momentum tensor Tab,
and it is related to the Einstein tensor Gab via a system of non-linear partial differential
equations, known as Einstein’s field equations (EFEs) [1],

Gab = Rab −
1
2

Rgab = kTab, (1)

where k = 8πG
c4 is a constant with G as a Newtonian constant of gravitation and c as the

speed of light. The apparent look of EFEs is simple, but finding their exact solutions is much
more difficult because of their nonlinear nature. However, many exact solutions of these
equations have been found in the literature, and have played a pivotal role in the discussion
of physical problems. Some of the known solutions of EFEs include Schwarzchild, Kerr,
Reissner and Nordstrm, de Sitter, Tolman, Friedmann–Robertson–Walker, and plane wave
solutions. Out of these solutions, Schwarzchild and Kerr solutions are found to be very
helpful in the study of black holes. Similarly, Friedmann solutions play a key role in the field
of cosmology and the plane wave solutions in discovering the existence of gravitational
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radiations [1]. All these exact solutions of EFEs are obtained under some assumptions,
the most common being the symmetry restrictions on the metric of spacetime. Such
restrictions not only help in finding the exact solution of EFEs, they are also used in the
classification of the existing solutions. Killing symmetry, also called the Killing vector field
(KVF), is considered to be the most basic spacetime symmetry and is defined in terms of
a smooth vector field V such that the Lie derivative of the metric tensor along V turns
out to be zero; that is, LV gab = 0 [2]. In order to explore KVFs for any spacetime, one
requires to derive a set of Killing equations by using the relation LV gab = 0 and to solve
these equations to get the explicit form of KVFs. These vector fields have been studied for
some physically important spacetimes such as static, cylindrically symmetric [3], static,
spherically symmetric [4] and plane symmetric spacetimes [5].

Corresponding to the KVFs admitted by a spacetime, there exist conservation laws [6].
In the literature, it is observed that most of the conservation laws in a spacetime are given
by the KVFs they admit. However, there are certain conservation laws which are not
given by KVFs. For example, in the Friedmann metric, there is no timelike KVF giving
conservation of energy, but the same conservation law can be achieved in this metric with
the help of conformal symmetries [7]. Like Killing symmetry, conformal symmetry is also
defined in terms of a smooth vector field V satisfying the relation [2]

LV gab = 2αgab, (2)

where α denotes a real valued function on the spacetime. In explicit form, Equation (2)
gets the form

gab,cVc + gacVc, b + gbcVc
,a = 2αgab. (3)

Varying a, b, and c from 0 to 3 in the above equation and using the Einstein’s summa-
tion convention over the repeated indices, we get a system of ten equations. The solution
of these ten equations leads to the explicit form of the vector field V. In cases where α in
Equation (2) is a constant, the conformal vector field becomes a homothetic vector field
(HVF). Conformal symmetries, also called conformal vector fields (CVFs) have many appli-
cations. These symmetries are used in literature as a mathematical tool for the integration
of EFEs [8]. Moreover, these symmetries have interesting applications in cosmology and
astrophysics [9,10]. Due to these applications, conformal symmetry attracted researchers
and different spacetimes were classified via this symmetry [11–14].

The method of direct integration was used for finding all the above-defined symmetries
in the aforementioned references, which is a cumbersome and time-consuming approach
that also runs the risk of losing some important metrics. In order to overcome these
problems and to ensure that no important spacetime metric is lost during the classification,
the recent literature of general relativity uses some computer algorithms for determining
all possible metrics possessing the desired symmetry. These metrics are then used to solve
the symmetry equations under consideration. This approach of investigating spacetime
symmetries is known as the Rif tree approach, and it has been recently used to classify some
spacetime metrics according to different symmetries [15–17], where it has been observed
that this new approach not only recovers all the metrics obtained by direct integration
technique but also gives some new metrics. In this paper, we use this approach to study
homothetic symmetries of the most general static, cylindrically symmetric metric.

2. Homothetic Symmetry Equations

The metric of static, cylindrically symmetric spacetimes is given by [1]

ds2 = −A2(r) dt2 + dr2 + B2(r) dθ2 + C2(r) dz2, (4)

where A 6= 0, B 6= 0 and C 6= 0. This metric admits at least three KVFs, given by V(1) =
∂t, V(2) = ∂θ and V(3) = ∂z. Out of the three metric coefficients A, B, and C, if any two are
same, the above metric reduces to the metric of static plane symmetric spacetimes, admitting
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the same three KVFs along with an additional rotational symmetry. The homothetic
symmetries of static plane symmetric spacetimes were explored by using the Rif tree
approach in Ref. [18]. Thus, throughout this paper we only consider static, cylindrically
symmetric metrics with A 6= B 6= C. By using g00 = −A2, g11 = 1, g22 = B2 and g33 = C2

from the above metric in Equation (2) with α = const., we obtain the following set of
homothetic symmetry equations:

A′ V1 + A V0
,0 = αA, (5)

A2 V0
,1 −V1

,0 = 0, (6)

B2 V2
,0 − A2 V0

,2 = 0, (7)

C2 V3
,0 − A2 V0

,3 = 0, (8)

V1
,1 = α, (9)

V1
,2 + B2 V2

,1 = 0, (10)

V1
,3 + C2V3

,1 = 0, (11)

B′ V1 + B V2
,2 = αB, (12)

B2 V2
,3 + C2 V3

,2 = 0, (13)

C′ V1 + C V3
,3 = αC. (14)

The solution of the above system leads to the explicit form of HVFs for α 6= 0, whereas
for α = 0 it gives KVFs. These equations were solved in Ref. [18] by considering α 6= 0 and
using the direct integration approach. The authors obtained only two static, cylindrically
symmetric metrics (other than plane symmetric) possessing proper HVFs.

In the direct integration technique, one needs to decouple the set of symmetry equa-
tions and then integrate it. Moreover, some conditions on the metric functions are also
needed to solve this system. The main drawback of this approach of solving symmetry
equations is that it does not provide a complete classification of the spacetime under con-
sideration because there is no criteria for choosing the values of metric functions. On the
other hand, a newly developed Rif tree approach provides a systematic way to solve the
set of symmetry equations and provides many more metrics than those given by the direct
integration technique. In this way, one gets a complete classification of the spacetime
under consideration.

The Rif tree approach is based on a Maple algorithm, known as Rif algorithm, whose
idea was first given by Reid et al. [19]. This algorithm was developed for the purpose of
reduction of nonlinear systems of differential equations to reduced involutive form by
using some algebraic and differentiation operations. As a result, the simplified involutive
form of the system satisfies the constant-rank condition, and it contains all the integrability
conditions. To start the procedure, one needs to consider a system of differential equations
along with a matrix representing the ranking of the derivatives used in the equations. In the
second step, the basic operations of algebra and derivatives are utilized for transforming
the system to a specific form that includes all integrability conditions. The Rif algorithm is
a powerful tool that can be used for reducing the complexity of the system. It also gives
information about the number of solutions of a system before solving it. Though this
calculation is simple, it is quite lengthy. However, one may use the “rifsimp” command
with the “Exterior” package in Maple for all these calculations. The Maple command
“caseplot” is used to view the output of the Rif algorithm graphically. The resulting plot
is always in the form of a tree, known as Rif tree or classification tree. While solving the
symmetry equations by this method, each branch of the Rif tree gives a unique metric.
After that, one needs to solve the symmetry equations for all these metrics. Here, we use
the Rif tree approach to solve the set of symmetry equations and prove that this approach
produces many new metrics which were not listed in Ref. [18].
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In order to find all possible static cylindrically symmetric metrics admitting HVFs,
we analyze Equations (5)–(14) through the Rif algorithm. The algorithm imposes some
conditions on A, B, and C, which we then use to solve Equations (5)–(14) to get the explicit
form of HVFs. These conditions are displayed in the form of branches of the Rif tree, given
in Figure 1. The nodes of the Rif tree, denoted by p1, p1, . . . , p12 are called pivots and
are given in (15). Moreover, the symbols ” = ” and “<> ” in the tree signify whether
the corresponding pi is zero or non-zero, respectively. In this way, every branch restricts
the metric functions A, B, and C to satisfy some conditions which are then used to solve
Equations (5)–(14).

Figure 1. Rif Tree.

p1 = A′, p2 = C′, p3 = B′,

p4 = A′′A− A′2, p5 = B′2 − BB′′, p6 = C′2 − CC′′,

p7 = AA′′′ − A′′A′, p8 = A′′C− A′C′, p9 = B′A′ − BA′′,

p10 = CC′′′ − C′C′′, p11 = B′B′′ − BB′′′, p12 = C′B′ − BC′′. (15)

For the conditions of some branches, the solution of Equations (5)–(14) gives the
minimum three KVFs with no proper homothety. Such branches are labeled by 7, 12, 17,
and 18 in the Rif tree. In the remaining branches, we have either obtained one proper
HVF along with three minimum KVFs or four or seven KVFs with no proper HVF. We
summarize our results in the forthcoming sections.

2.1. Four HVFs

For branches 1, 5, 6, 10, 15, and 16, the solution of Equations (5)–(14) yields four-
dimensional homothetic algebra, with one proper homothety and three minimum KVFs.
Moreover, some of these branches produce more than one metric, each possessing the same
number of HVFs. All these metrics along with the explicit form of homothetic vector field
V and the proper homothety are listed in Table 1.

Comparing our results with those of Ref. [18], one can easily observe that here we
have obtained 12 static, cylindrically symmetric metrics possessing four HVFs, whereas
in Ref. [18] the authors obtained only two metrics whose homothetic algebra is four-
dimensional. The remaining metrics given in Ref. [18] are static plane symmetric metrics.
This proves the significance of the Rif tree approach, in that it gives a complete classification
of spacetime under consideration with respect to homothetic symmetries.
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All the obtained metrics of this section have a non-zero Weyl tensor of Petrov type I.
To check whether the obtained spacetime metrics are regular or they contain some singular-
ity, we find the corresponding Kretschmann scalar for all these metrics. The Kretschmann
scalar, denoted by K, is a quadratic scalar invariant defined by K = RabcdRabcd, where Rabcd
is the Riemann curvature tensor and Einstein’s summation convention is applied on the
repeated indices a, b, c, and d. The Kretschmann scalar for the metric 4a is obtained as

K =
4

(αr + b1
)4

[
b2

2(α− b2)
2 + b2

3(α− b3)
2 + b2

4(α− b4)
2 + (α− b2)

2(α− b3)
2

+ (α− b2)
2(α− b4)

2 + (α− b3)
2(α− b4)

2
]

. (16)

As the metric functions A, B, and C are non-zero, thus αr + b1 6= 0. Therefore, the
Kretschmann scalar is finite and hence the spacetime has no singularity. In addition,
because α 6= b2 6= b3 6= b4, the values of K is always non-zero.

For the metric 4b, the Kretschmann scalar becomes

K =
4b4

1

(b1r + b2
)4

[
b2

3 + b2
4 + b2

3b2
4 + b2

3(b3 − 1)2 + b2
4(b4 − 1)2

]
, (17)

which is again finite, as b1r + b2 6= o; otherwise, the metric functions vanish. Hence the
metric 4b is regular. The structure of the Kretschmann scalar for the metrics 4c and 4d is the
same as that of the metric 4b with only the difference of constants involved in the values of
A, B, and C. Hence, the metrics 4c and 4d have no singularity.

Similarly, the value of K for the metric 4e is found to be

K =
4

(αr + b1
)4

[
b2

2(α− b2)
2 + b2

5(α− b5)
2 + (α− b2)

2(α− b5)
2
]

. (18)

Like the previous cases, here K is finite as αr + b1 6= 0. Thus the metric is regular. Similarly,
the Kretschmann scalar for the metrics 4h and 4j, being similar in structure to that of the
metric 4e, is finite, and hence these two metrics are also regular.

The Kretschmann scalar for the metrics 4 f , 4g, 4i, 4k, and 4l have a similar structure
with only the difference of parameters involved in the values of A, B, and C. Out of these
metrics, the value of K for metric 4 f is given by

K =
4b2

3(b1 − α)2(b2
1 + α2)

α4(b3r + b4)4 , (19)

which is finite because b3r + b4 6= 0 and α 6= 0. Hence, the metrics 4 f , 4g, 4i, 4k, and 4l
have no singularity.

Table 1. Metrics admitting four HVFs.

No. Metric V = V a∂xa Proper HVF

4a. A =
(
αr + b1

)1− b2
α , B =

(
αr + b1

)1− b3
α {b2t + b5}∂t + {αr + b1}∂r+ r∂r .

(Branch 1) C =
(
αr + b1

)1− b4
α , b2 6= α 6= b3 6= b4. {b3θ + b6}∂θ + {b4z + b7}∂z.

4b. A = b1r + b2, B = Ab3 {b5}∂t + {α A
b1
}∂r+ A

b1
∂r + θ(1− b3)∂θ

(Branch 1) C = Ab4 , b3 6= b4 6= 0, 1. {θ(1− b3)α + b6}∂θ +z(1− b4)∂z.
+{αz(1− b4) + b7}∂z.

4c. A = Bb1 , B = b2r + b3 {αt(1− b1) + b5}∂t + {α B
b2
}∂r+ t(1− b1)∂t +

B
b2

∂r

(Branch 1) C = Ab4 , b1 6= b4 6= 0, 1. {b6}∂θ + {αz(1− b4) + b7}∂z. +z(1− b4)∂z.

4d. A = Cb1 , B = Cb2 {αt(1− b1) + b5}∂t + {α C
b3
}∂r+ t(1− b1)∂t +

C
b3

∂r

(Branch 1) C = b3r + b4, b1 6= b2 6= 0, 1. {θ(1− b2)α + b6}∂θ + {b7}∂z. +θ(1− b2)∂θ .
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Table 1. Cont.

No. Metric V = V a∂xa Proper HVF

4e. A =
(
αr + b1

)1− b2
α , B = c1 6= 0 {b2t + b3}∂t + {αr + b1}∂r+ r∂r + θ∂θ .

(Branch 5) C =
(
αr + b1

)1− b5
α , b2 6= α 6= b5 {αθ + b4}∂θ + {b5z + b6}∂z.

4f. A = C1− b1
α , B = b2 6= 0 {b5}∂t + {α C

b3
}∂r+ C

b3
∂r + θ∂θ .

(Branch 5) C =
(
b3r + b4

)
, b1 6= α. {αθ + b6}∂θ + {b7}∂z.

4g. A =
(
b1r + b2

)
, B = b3 6= 0 {b5}∂t + {α A

b1
}∂r+ A

b1
∂r + θ∂θ .

(Branch 6) C = A1− b4
α , b4 6= α. {αθ + b6}∂θ + {b7}∂z.

4h. A =
(
αr + b5

)1− b1
α , B =

(
αr + b5

)1− b3
α {b1t + b2}∂t + {αr + b5}∂r+ r∂r + z∂z.

(Branch 10) C = c1 6= 0, b1 6= α 6= b3 {b3θ + b4}∂θ + {αz + b6}∂z.

4i. A = B1− b1
α , B =

(
b2r + b3

)
{b5}∂t +

B
b2

∂r B
b2

∂r + z∂z.
(Branch 10) C = b4 6= 0, b1 6= α {b6}∂θ + {αz + b7}∂z.

4j. A = c1 6= 0, B =
(
αr + b4

)1− b2
α {αt + b1}∂t + {αr + b4}∂r+ t∂t + r∂r .

(Branch 15) C =
(
αr + b4

)1− b5
α , b2 6= α 6= b5. {b2θ + b3}∂θ + {b5z + b6}∂z.

4k. A = b1 6= 0, B =
(
b2r + b3

)
{αt + b5}∂t + {α B

b2
}∂r+ t∂t +

B
b2

∂r .

(Branch 15) C = B1− b4
α , b4 6= α {b6}∂θ + {b7}∂z.

4l. A = b1 6= 0, B = C1− b2
α {αt + b5}∂t + {α C

b3
}∂r+ t∂t +

C
b3

∂r .
(Branch 16) C =

(
b3r + b4

)
, b5 6= α. {b6}∂θ + {b7}∂z.

2.2. Four KVFs

This section contains the results of those branches of the Rif tree for which the solution
of Equations (5)–(14) leads to one additional KVF, along with the three minimum ones,
and no proper homothety. Such branches are labeled by 4, 8, 13, and 19 in the Rif tree.
The exact form of the metrics of these branches, the components of the Killing vector field
V and additional KVFs are given in Table 2.

Table 2. Metrics admitting four KVFs.

No. Metric Vector Field Components Additional KVFs

4(i). A = ec1r+c2 , V0 = −c1b1t + b2 V(4) = −c1t∂t + ∂r − c3θ∂θ

(Branch 4) B = ec3r+c4 , V1 = b1 −c5z∂z
C = ec5r+c6 , V2 = −c3b1θ + b3
where c1 6= c3 6= c5 V3 = −c5b1z + b4

4(ii). A = c4ec2r , V0 = −c2b1t + b2 V(4) = −c2t∂t + ∂r − c3z∂z

(Branch 8) B = c1, V1 = b1
C = c5ec3r , V2 = b3
where c1 6= c2 6= c3 V3 = −c3b1z + b4

4(iii). A = c3ec2 , V0 = −c2b1t + b2 V(4) = −c2t∂t + ∂r − c4θ∂θ

(Branch 13) B = c5ec4r ,
C = c1, V2 = −c4b1θ + b3
where c1 6= c2 6= c4 V3 = b4

4(iv). A = c1, V0 = b1 V(4) = ∂r − c3θ∂θ − c5z∂z

(Branch 19) B = c2ec3r , V1 = b2
C = c4ec5r , V2 = −c3b2θ + b3
where c1 6= c3 6= c5 V3 = −c5b2z + b4

A complete classification of the static cylindrically symmetric spacetimes via their
KVFs was presented in Ref. [3], where the authors solved the set of Killing equations by
direct integration approach. However, like the case of homotheties, the metrics obtained
here by Rif tree approach were not listed in Ref. [3].
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The Weyl tensor for all the metrics of this section vanishes; therefore, all these metrics
are conformally flat and are of Petrov type O. The Kretschmann scalar for the metric 4(i) is
obtained as

K = 4
[

c4
1 + c4

3 + c4
5 + c2

1c2
3 + c2

3c2
5 + c2

1c2
5

]
, (20)

which is always finite. Thus, the metric 4(i) is regular. The structure of Kretschmann scalar
for the remaining three metrics is similar, with only the difference of parameters involved
in the metric functions. For metric 4(ii), it has the value

K = 4
[

c4
2 + c4

3 + c2
2c2

3

]
, (21)

which is clearly finite. Hence, all three metrics given by 4(ii), 4(iii) and 4(iv) are regular.

2.3. Seven KVFs

The branches 9, 14, and 20 of the Rif tree produce metrics admitting seven KVFs, out
of which three are the minimum ones and the extra four KVFs along with the components
of vector field V, are given in Tables 3–5. Like the previous section, these three metrics
were not found in Ref. [3].

For all the three metrics of this section, the Weyl tensor vanishes; thus, all these metrics
are conformally flat and of Petrov type O. The Kretschmann scalar for all these three metrics
is given by K = 12c4

1, showing that these metrics have no singularity.

Table 3. Metrics admitting seven KVFs.

No. Metric Vector Field Components Additional KVFs

7a. A(r) = c2ec1r + c3e−c1r , V0 = B
mA

(
− b1 sin mt + b2 cos mt) cos mθ, V(4) = − B

mA sin mt cos mθ∂t

(Branch 9) C(r) = c4 A′(r), + B
mA

(
− b3 sin mt + b4 cos mt) sin mθ + b5, + B

mA cos mt cos mθ∂r ,
B(r) = c5, V1 =

(
b1 sin mt + b2 cos mt) cos mθ − A

mB cos mt sin mθ∂θ ,
+
(
b3 sin mt + b4 cos mt) sin mθ, V(5) =

B
mA cos mt cos mθ∂t,

V2 = − A
mB

(
b1 sin mt + b2 cos mt) cos mθ + B

mA sin mt cos mθ∂r
+ A

mB
(
b3 sin mt + b4 cos mt) sin mθ + b6, − A

mB sin mt sin mθ∂θ ,
V3 = b7. V(6) = − B

mA sin mt sin mθ∂t

where m = 2c1
√

c2c3, + B
mA cos mt cos mθ∂r

+ A
mB cos mt cos mθ∂θ

V(7) =
B

mA cos mt sin mθ∂t

+ B
mA sin mt sin mθ∂r

+ A
mB sin mt cos mθ∂θ

Table 4. Metrics admitting seven KVFs.

No. Metric Vector Field Components Additional KVFs

7b. A(r) = c2ec1r + c3e−c1r , V0 = A′
nA

(
b1 sin my + b2 cos my) cos nt V(4) =

A′
nA sin my cos nt∂t

(Branch 14) B(r) = c4 A′(r), − A′
nA

(
b3 sin my + b4 cos my) sin nt + b5, + sin my sin nt∂r ,

C(r) = c5, V1 =
(
b1 sin my + b2 cos my) sin nt + A

mB cos my sin nt∂θ ,
+
(
b3 sin my + b4 cos my) cos nt, V(5) =

A′
nA cos my cos nt∂t,

V2 = − A
mB

(
b1 cos my− b2 sin my) sin nt + sin nt cos my∂r

+ A
mB

(
b3 cos my− b4 sin my) cos nt + b6, − A

mB sin my sin nt∂θ ,
V3 = b7. V(6) = − A′

nA sin my sin nt∂t
where n = 2c1

√
c2c3, m = 2c4

√
c2c3 + sin my cos nt∂r

+ A
mB cos my cos nt∂θ

V(7) = − A′
nA cos my sin nt∂t

+ cos my cos nt∂r
− A

mB sin my cos nt∂θ
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Table 5. Metrics admitting seven KVFs.

No. Metric Vector Field Components Additional KVFs

7c. A(r) = c5, V0 = b1, V(4) = sin mzeny∂r

(Branch 20) B(r) = c4C′(r), V1 =
(
b2 sin mz + b3 cos mz)eny − B′

nB sin mzeny∂θ

C(r) = c2ec1r + c3e−c1r , +
(
b4 sin mz + b5 cos mz)e−ny, + B

mC cos mzeny∂z,
V2 = − B′

nB
(
b2 sin mz + b3 cos mz)eny, V(5) = cos mzeny∂r

+ B′
nB

(
b4 sin mz + b5 cos mz)e−ny + b6 − B′

nB cos mzeny∂θ

V3 = B
mC

(
b2 cos mz− b3 sin mz)eny + B

mC cos mzeny∂z,
+ B

mC
(
b4 cos mz− b5 sin mz)e−ny + b7. V(6) = sin mze−ny∂r

where n = 2c1
√

c2c3, m = 2c4
√

c2c3 + B′
nB sin mze−ny∂θ

+ B
mC cos mze−ny∂z,

V(7) = cos mze−ny∂r

+ B′
nB cos mze−ny∂θ

− B
mC cos mze−ny∂z

3. Conclusions

In this paper, we have explored HVFs of static, cylindrically symmetric spacetimes.
Instead of the frequently used method of directly integrating the homothetic symmetry
equations, we have analyzed these equations by using the Rif algorithm that gives many
static, cylindrically symmetric metrics possessing different dimensional homothetic and
Killing algebras. Out of these, twelve metrics admit one proper HVF along with three
minimum KVFs of the spacetimes under consideration. The remaining metrics possess
three, four, or seven KVFs with no proper homothety. By finding the Lie algebra of the
obtained vector fields by using the relation [V1, V2] = V1V2 − V2V1, one can easily check
that the structure of Lie algebra for each metric is different from that of all other metrics.
Thus, no two of these metrics are connected by coordinate transformations. We have also
calculated the Weyl tensor for all the obtained metrics, and it is observed that for the metrics
admitting proper HVFs, the Weyl tensor is Petrov type I. For the metrics of Sections 2.3 and
2.4, the Weyl tensor vanishes, and therefore these are Petrov type O metrics. By finding the
Kretschmann scalar, it is conjectured that all the obtained metrics during our classification
are regular.

Comparing our result with those obtained in an earlier study by direct integration
technique, it is observed that the Rif tree approach recovers all the metrics given by
direct integration method, and it also produces many extra metrics. Thus, the Rif tree
approach is a better choice to be used for the classification of spacetimes via their Killing
and homothetic symmetries.
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