Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain
Abstract
:1. Introduction and Motivation
2. A Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis, Volume I. International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Mathemat. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Geol, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2020, 47, 1513–1532. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ravichandran, V. Subordinations for functions with positive real part. Complex Anal. Oper. Theory 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. 1996, 19, 101–105. [Google Scholar]
- Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with the lemniscate of bernoulli. Taiwan J. Math. 2012, 16, 1017–1026. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Ravichandran, V. Sufficient conditions for starlike functions associated with the lemniscate of bernoulli. J. Inequal. Appl. 2013, 2013, 176. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Khan, M.G.; Ahmad, B.; Mashwani, W.K. A class of analytic functions associated with sine hyperbolic functions. arXiv 2020, arXiv:2011.04875v1. [Google Scholar]
- Paprocki, E.; Sokół, J. The extremal problem in some subclass of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Math. 1996, 20, 89–94. [Google Scholar]
- Ahmad, B.; Khan, M.G.; Frasin, B.A.; Aouf, M.K.; Abdeljawad, T.; Mashwani, W.K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of bernoulli domain. AIMS Math. 2021, 6, 3037–3052. [Google Scholar] [CrossRef]
- Sharma, K.; Ravichandran, V. Applications of subordination theory to starlike functions. Bull. Iran. Math. Soc. 2016, 42, 761–777. [Google Scholar]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M.; Ahmad, Q.Z. Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain. Mathematics 2020, 8, 1334. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Hu, Q.; Srivastava, H.; Ahmad, B.; Khan, N.; Khan, M.; Mashwani, W.; Khan, B. A subclass of multivalent Janowski type q-Starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Kumar, S.S.; Arora, K. Starlike functions associated with a petal shaped domain. arXiv 2020, arXiv:2010.10072. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficients inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Jack, I.S. Functions starlike and convex of order alpha. J. Lond. Math. Soc. 1971, 2, 469–474. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Srivastava, H.M.; Khan, M.G.; Khan, N.; Ahmad, B.; Khan, B.; Mashwani, W.K. Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain. Axioms 2021, 10, 291. https://doi.org/10.3390/axioms10040291
Shi L, Srivastava HM, Khan MG, Khan N, Ahmad B, Khan B, Mashwani WK. Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain. Axioms. 2021; 10(4):291. https://doi.org/10.3390/axioms10040291
Chicago/Turabian StyleShi, Lei, Hari M. Srivastava, Muhammad Ghaffar Khan, Nazar Khan, Bakhtiar Ahmad, Bilal Khan, and Wali Khan Mashwani. 2021. "Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain" Axioms 10, no. 4: 291. https://doi.org/10.3390/axioms10040291
APA StyleShi, L., Srivastava, H. M., Khan, M. G., Khan, N., Ahmad, B., Khan, B., & Mashwani, W. K. (2021). Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain. Axioms, 10(4), 291. https://doi.org/10.3390/axioms10040291