Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli
Abstract
:1. Introduction
- (1)
- either h is convex, or Q is starlike univalent in D, and
- (2)
- for .
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokól, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with the lemniscates of Bernoulli. Taiwan J. Math. 2012, 16, 1017–1026. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Sokól, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Raza, M.; Sokól, J.; Mushtap, M. Differential subordinations for analytic functions. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 883–890. [Google Scholar] [CrossRef]
- Kumar, S.; Ravichandran, V. Subrodinations for functions with positive real part. Complex Anal. Oper. Theory 2018, 12, 1179–1191. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Differential superordination for harmonic complex-valued functions. Stud. Univ. Babes-Bolyai Math. 2019, 64, 487–496. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function Theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Certain subordination-preserving family of integral operators associated with p-valent functions. Appl. Math. Inform. Sci. 2017, 11, 951–960. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; El-Ashwah, R.M.; Breaz, N. A certain subclass of multivalent functions involving higher-order derivatives. Filomat 2016, 30, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Liu, J.-L. On Subordinations for Certain Multivalent Analytic Functions in the Right-Half Plane. J. Funct. Spaces 2016, 2016, 1782916. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.-M.; Liu, J.-L. A family of meromorphic functions involving generalized Mittag-Leffler function. J. Math. Inequal. 2018, 12, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Seoudy, T.M.; Shammaky, A.E. On certain class of Bazilevič functions associated with the Lemniscate of Bernoulli. J. Funct. Spaces 2020, 2020, 6622230. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordination. In Theory and Application; Marce Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Liu, J.-L. Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli. Axioms 2021, 10, 160. https://doi.org/10.3390/axioms10030160
Liu L, Liu J-L. Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli. Axioms. 2021; 10(3):160. https://doi.org/10.3390/axioms10030160
Chicago/Turabian StyleLiu, Likai, and Jin-Lin Liu. 2021. "Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli" Axioms 10, no. 3: 160. https://doi.org/10.3390/axioms10030160