Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Equation with Iterated Fractional Integrals Conditions
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (i)
- (ii)
3. Main Results
3.1. Existence and Uniqueness Result via Banach’s Fixed Point Theorem
- there exists a function with
3.2. Existence and Uniqueness Result via Banach’s Fixed Point Theorem and Hölder’s Inequality
3.3. Existence and Uniqueness Result via Nonlinear Contractions
3.4. Existence Result via Leray–Schauder Nonlinear Alternative
- (i)
- has a fixed point in or
- (ii)
- there is a (the boundary of U in C) and with
- there exist a continuous nondecreasing function and a function such that
- there exists a constant such that
4. Special Cases
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, G.; Li, C.; Kurths, J. Chaos synchronization in fractional differential systems. Philos. Trans. R. Soc. A 2013, 371, 201201553. [Google Scholar] [CrossRef] [PubMed]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Wang, Y.; Liang, S.; Wang, Q. Existence results for fractional differential equations with integral and multi-point boundary conditions. Bound. Value Probl. 2018, 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.S. Coercive nonlocal elements in fractional differential equations. Positivity 2017, 21, 377–394. [Google Scholar] [CrossRef]
- Ahmad, B.; Alruwaily, Y.; Alsaedi, A.; Nieto, J.J. Fractional integro-differential equations with dual anti-periodic boundary conditions. Differ. Integral Equ. 2020, 33, 181–206. [Google Scholar]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A. Existence results for a nonlinear coupled system involving both Caputo and Riemann–Liouville generalized fractional derivatives and coupled integral boundary conditions. Rocky Mt. J. Math. 2020, 50, 1901–1922. [Google Scholar] [CrossRef]
- Kiataramkul, C.; Yukunthorn, W.; Ntouyas, S.K.; Tariboon, J. Sequential Riemann–Liouville and Hadamard–Caputo fractional differential systems with nonlocal coupled fractional integral boundary conditions. Axioms 2021, 10, 174. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Baleanu, D.; Souid, M.S.; Hakem, A.; Inc, M. Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 2021, 365. [Google Scholar] [CrossRef]
- Alam, M.; Zada, A.; Popa, I.-L.; Kheiryan, A.; Rezapour, S.; Kaabar, M.K.A. A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers-Ulam stability. Bound. Value Probl. 2021, 2021, 73. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ntouyas, S.K.; Agarwal, R.P.; Ahmad, B. On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equ. 2015, 2015, 33. [Google Scholar] [CrossRef] [Green Version]
- Promsakon, C.; Phuangthong, N.; Ntouyas, S.K.; Tariboon, J. Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with generalized fractional integral conditions. Adv. Differ. Equ. 2018, 2018, 385. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Cuntavepanit, A.; Ntouyas, S.K.; Nithiarayaphaks, W. Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations. J. Funct. Spaces 2018, 2018, 6974046. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Phuangthong, N.; Ntouyas, S.K.; Tariboon, J. Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with nonlocal and integral boundary conditions. Int. J. Anal. Appl. 2019, 17, 47–63. [Google Scholar]
- Asawasamrit, S.; Ntouyas, S.K.; Tariboon, J.; Nithiarayaphaks, W. Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions. Symmetry 2018, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Alsaedi, A.; Albideewi, A.F.; Ntouyas, S.K.; Ahmad, B. Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations. CUBO 2021, 23, 225–237. [Google Scholar]
- Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Mainardi, F. Some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Berlin, Germany, 1997; pp. 291–348. [Google Scholar]
- Yin, C.; Liu, F.; Anh, V. Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum. J. Algorithm Comput. Technol. 2007, 1, 427–447. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntouyas, S.K.; Sitho, S.; Khoployklang, T.; Tariboon, J. Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Equation with Iterated Fractional Integrals Conditions. Axioms 2021, 10, 277. https://doi.org/10.3390/axioms10040277
Ntouyas SK, Sitho S, Khoployklang T, Tariboon J. Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Equation with Iterated Fractional Integrals Conditions. Axioms. 2021; 10(4):277. https://doi.org/10.3390/axioms10040277
Chicago/Turabian StyleNtouyas, Sotiris K., Surang Sitho, Teerasak Khoployklang, and Jessada Tariboon. 2021. "Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Equation with Iterated Fractional Integrals Conditions" Axioms 10, no. 4: 277. https://doi.org/10.3390/axioms10040277
APA StyleNtouyas, S. K., Sitho, S., Khoployklang, T., & Tariboon, J. (2021). Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Equation with Iterated Fractional Integrals Conditions. Axioms, 10(4), 277. https://doi.org/10.3390/axioms10040277