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Abstract: This paper studies the existence and uniqueness of solutions for a new coupled system of
nonlinear sequential Caputo and Hadamard fractional differential equations with coupled separated
boundary conditions, which include as special cases the well-known symmetric boundary conditions.
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1. Introduction

Fractional differential equations appear in the mathematical modeling of many real-world
phenomena occurring in engineering and scientific disciplines, for instance, see References [1–6].
Mathematical models based on fractional-order integral and differential operators yield more insight
into the characteristics of the associated phenomena, as such operators are nonlocal in nature,
in contrast to classical ones. In particular, coupled systems of fractional-order differential equations
have received great attention in view of their great utility in handling and comprehending practical
issues, such as the synchronization of chaotic systems [7,8], anomalous diffusion [9], and ecological
effects [10]. For recent theoretical results on the topic, we refer the reader to a series of papers [11–18]
and the references cited therein.

Recently, in Reference [19], the authors discussed existence and the uniqueness of solutions for
sequential Caputo and Hadamard fractional differential equations subject to separated boundary
conditions as 

CDp(H Dqx)(t) = f (t, x(t)), t ∈ [a, b],

α1x(a) + α2(
H Dqx)(a) = 0, β1x(b) + β2(

H Dqx)(b) = 0,
(1)

where CDp and H Dq are the Caputo and Hadamard fractional derivatives of orders p and q, respectively,
0 < p, q ≤ 1, starting at a point a > 0, f : [a, b]×R→ R is a continuous function and given constants
αi, βi ∈ R, i = 1, 2.
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In this paper, we established the existence criteria for a coupled system of sequential Caputo and
Hadamard fractional differential equations with coupled separated boundary conditions as:

CDp1 H Dq1 x(t) = f (t, x(t), y(t)), t ∈ [a, b],

H Dq2 CDp2 y(t) = g(t, x(t), y(t)), t ∈ [a, b],

α1x(a) + α2
CDp2 y(a) = 0, β1x(b) + β2

CDp2 y(b) = 0,

α3y(a) + α4
H Dq1 x(a) = 0, β3y(b) + β4

H Dq1 x(b) = 0,

(2)

where CDpi and H Dqi are notations of the Caputo and Hadamard fractional derivatives of orders pi and
qi, respectively, 0 < pi, qi ≤ 1, i = 1, 2, the nonlinear continuous functions f , g : [a, b]×R×R → R,
a > 0, αi ∈ R \ {0}, βi ∈ R, i = 1, . . . , 4. Meanwhile, the different definitions of Caputo and Hadamard
fractional derivatives that appeared in System (2) are proposed to study the existence theory of
solutions of a fractional differential system using a variety of fixed-point theorems. A special case,
when pi = qi = 1, i = 1, 2, in differential Equation (2) can be presented as:

tx′′ + x′ = f (t, x, y), ty′′ = g(t, x, y), t ∈ [a, b],

α1x(a) + α2y′(a) = 0, β1x(b) + β2y′(b) = 0,

α3y(a) + α4(tx′)(a) = 0, β3y(b) + β4(tx′)(b) = 0,

(3)

which is mixed type of ordinary differential equations and boundary conditions.
The rest of this paper is organized as follows: Section 2 aims to recall basic definitions and lemmas

used in this paper. Section is devoted to the main results concerning the existence and uniqueness of
solutions for for System (2). The Leray–Schauder alternative and Krasnoselskii’s fixed-point theorem
were applied to prove existence, while the uniqueness result was obtained via the Banach contraction
mapping principle. Some illustrative examples are presented in Section 4.

2. Preliminaries

To ensure that readers can easily understand the results, we recall some notations and definitions
of fractional calculus [3,20].

Definition 1. The Caputo fractional derivative of order q for an at least n-times differentiable function g :
[a, ∞)→ R, starting at a point a > 0, is defined as:

CDqg(t) =
1

Γ(n− q)

∫ t

a
(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2. The Riemann–Liouville fractional integral of order q of a function g : [a, ∞) → R, a > 0,
is defined as:

RL Iqg(t) =
1

Γ(q)

∫ t

a

g(s)
(t− s)1−q ds, q > 0,

provided the right side of an integral exists.

Definition 3. The Caputo-type Hadamard fractional derivative of order q for an at least n-times delta
differentiable function g : [a, ∞)→ R, starting at a point a > 0, is defined as

H Dqg(t) =
1

Γ(n− q)

∫ t

a

(
log

t
s

)n−q−1
δng(s)

ds
s

, n− 1 < q < n, n = [q] + 1,



Symmetry 2018, 10, 701 3 of 17

where the delta derivative is defined by δ = t d
dt and the natural logarithm log(·) = loge(·).

Definition 4. The Hadamard fractional integral of order q is defined as

H Iqg(t) =
1

Γ(α)

∫ t

a

(
log

t
s

)q−1
g(s)

ds
s

, q > 0, a > 0,

provided the integral exists.

Lemma 1. The general solution of homogeneous fractional differential equation CDqu(t) = 0, q > 0 is given by

u(t) = c0 + c1(t− a) + . . . + cn−1(t− a)n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

In view of Lemma 1, we have

RL IqCDqu(t) = u(t) + c0 + c1(t− a) + . . . + cn−1(t− a)n−1, (4)

for some constants ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

Lemma 2 ([21]). Let ACn
δ [a, b] = {g : [a, b] → C : δn−1g(t) ∈ AC[a, b]} and u ∈ ACn

δ [a, b] or Cn
δ [a, b]

and q ∈ C. Then, the following formula holds

H Iq(H Dq)u(t) = u(t)−
n−1

∑
k=0

ck (log(t/a))k ,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

Next, we transform Problem (2) to integral equations by using a linear variant of Problem (2).
For convenience, we put constants

Ω1 =
β1(log(b/a))q1

Γ(q1 + 1)
, Ω2 = β1 −

α1

α2
β2,

Ω3 = β4 −
α4

α3
β3, Ω4 =

α1β3(b− a)p2

α2Γ(p2 + 1)
,

and Ω = Ω1Ω4 + Ω2Ω3 6= 0.

Lemma 3. Let ω, φ ∈ C([a, b],R). Then, the linear system of sequential Caputo and Hadamard fractional
differential equations with coupled separated boundary value problem

CDp1 H Dq1 x(t) = ω(t), t ∈ [a, b],

H Dq2 CDp2 y(t) = φ(t), t ∈ [a, b],

α1x(a) + α2
CDp2 y(a) = 0, β1x(b) + β2

CDp2 y(b) = 0,

α3y(a) + α4
H Dq1 x(a) = 0, β3y(b) + β4

H Dq1 x(b) = 0,

(5)
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can be written as integral equations

x(t) = − 1
Ω

(
Ω3 + Ω4

(log(t/a))q1

Γ(q1 + 1)

)(
β1

H Iq1 RL Ip1 ω(b) + β2
H Iq2 φ(b)

)
+

1
Ω

(
Ω1 −Ω2

(log(t/a))q1

Γ(q1 + 1)

)(
β3

RL Ip2 H Iq2 φ(b) + β4
RL Ip1 ω(b)

)
(6)

+ H Iq1 RL Ip1 ω(t),

and

y(t) =
1
Ω

(
α4

α3
Ω4 +

α1

α2
Ω3

(t− a)p2

Γ(p2 + 1)

)(
β1

H Iq1 RL Ip1 ω(b) + β2
H Iq2 φ(b)

)
+

1
Ω

(
α4

α3
Ω2 −

α1

α2
Ω1

(t− a)p2

Γ(p2 + 1)

)(
β3

RL Ip2 H Iq2 φ(b) + β4
RL Ip1 ω(b)

)
(7)

+ RL Ip2 H Iq2 φ(t).

Proof. Taking the Riemann–Liouville fractional integral of order p1, p1 ∈ (0, 1], to the first equation of
Problem (5) and applying Problem (4), we obtain for t ∈ [a, b]

H Dq1 x(t) = c1 +
RL Ip1 ω(t), c1 ∈ R. (8)

In the above equation, we apply the Hadamard fractional integral of order q1, q1 ∈ (0, 1], with (4)
for t ∈ [a, b] and obtain

x(t) = c2 + c1
(log(t/a))q1

Γ(q1 + 1)
+ H Iq1 RL Ip1 ω(t), c2 ∈ R. (9)

Considering the second equation of Problem (5), and by using the Hadamard fractional integral
of order q2, we get

CDp2 y(t) = c3 +
H Iq2 φ(t), c3 ∈ R. (10)

By taking the Riemann–Liouville fractional integral operator of order p2, we have

y(t) = c4 + c3
(t− a)p2

Γ(p2 + 1)
+ RL Ip2 H Iq2 φ(t), c4 ∈ R. (11)

In particular, for t = a in Equations (9) and (10), and applying the first condition of Problem (5),
one has

α1c2 + α2c3 = 0. (12)

For t = b in Equations (9) and (10), it obtains by applying the second condition of Problem (5) as

β1c1
(log(b/a))q1

Γ(q1 + 1)
+ β1c2 + β2c3 = −β1

H Iq1 RL Ip1 ω(b)− β2
H Iq2 φ(b) := Ω5. (13)

Substituting t = a in Equations (8) and (11) and applying the third condition of Problem (5), it
leads to

α4c1 + α3c4 = 0. (14)

The fourth condition of Problem (5) can be applied when t = b in Equations (8) and (11) as

β4c1 + β3c3
(b− a)p2

Γ(p2 + 1)
+ β3c4 = −β3

RL Ip2 H Iq2 φ(b)− β4
RL Ip1 ω(b) := Ω6. (15)
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Reduce the above Equations (12)–(15) in a system of constants by

Ω1c1 + Ω2c2 = Ω5, Ω3c1 −Ω4c2 = Ω6.

Computing for constants c1 and c2 and substituting it into Equations (12) and (14) for c3 and c4,
we have

c1 =
Ω4

Ω
Ω5 +

Ω2

Ω
Ω6, c2 =

Ω3

Ω
Ω5 −

Ω1

Ω
Ω6,

c3 = −α1Ω3

α2Ω
Ω5 +

α1Ω1

α2Ω
Ω6, c4 = −α4Ω4

α3Ω
Ω5 −

α4Ω2

α3Ω
Ω6.

Substituting all obtained constants in Equations (9) and (11), we obtain integral Equations (6)
and (7). By direct computation we can obtain the the converse. The proof is completed.

Remark 1. System (5) is well-defined because four constants αi ∈ R \ {0}, i = 1, 2, 3, 4, make meaningful
property for Caputo and Hadamard (Caputo-type) fractional derivatives, which lead to solve the system of
linear equations.

3. Main Results

Let C = C([a, b],R), a > 0, be the Banach space of all continuous functions form [a, b] to R. Space
X = {x(t) : x(t) ∈ C2([a, b],R)} endowed with the norm ‖x‖ = sup{|x(t)|, t ∈ [a, b]} is a Banach
space. In addition, let Y = {y(t) : y(t) ∈ C2([a, b],R)} with the norm ‖y‖ = sup{|y(t)|, t ∈ [a, b]}. It
is obvious that product space (X×Y, ‖(x, y)‖) is a Banach space with the norm ‖(x, y)‖ = ‖x‖+ ‖y‖.

Now, for brevity, we use the notations:

hx,y(t) = h(t, x(t), y(t)), h ∈ { f , g}, (16)

H IqRL Ip fx,y(φ) =
1

Γ(q)Γ(p)

∫ φ

a

∫ s

a

(
log

φ

s

)q−1
(s− r)p−1 fx,y(r)dr

ds
s

, (17)

and
RL Ip H Iq fx,y(φ) =

1
Γ(p)Γ(q)

∫ φ

a

∫ s

a
(φ− s)p−1

(
log

s
r

)q−1
fx,y(r)

dr
r

ds, (18)

where φ ∈ {t, b}. We also use this one for a single fractional integral operator of the Riemann–Liouville
and Hadamard types of orders p1 and q2, respectively.

In view of Lemma 3, we define two operators K : X×Y → X×Y by

K(x, y)(t) =

(
K1(x, y)(t)
K2(x, y)(t)

)
,

where

K1(x, y)(t) = − 1
Ω

(
Ω3 + Ω4

(log(t/a))q1

Γ(q1 + 1)

)(
β1

H Iq1 RL Ip1( fx,y)(b) + β2
H Iq2(gx,y)(b)

)
+

1
Ω

(
Ω1 −Ω2

(log(t/a))q1

Γ(q1 + 1)

)(
β3

RL Ip2 H Iq2(gx,y)(b) + β4
RL Ip1( fx,y)(b)

)
+ H Iq1 RL Ip1( fx,y)(t),
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and

K2(x, y)(t) =
1
Ω

(
α4

α3
Ω4 +

α1

α2
Ω3

(t− a)p2

Γ(p2 + 1)

)(
β1

H Iq1 RL Ip1( fx,y)(b) + β2
H Iq2(gx,y)(b)

)
+

1
Ω

(
α4

α3
Ω2 −

α1

α2
Ω1

(t− a)p2

Γ(p2 + 1)

)(
β3

RL Ip2 H Iq2(gx,y)(b) + β4
RL Ip1( fx,y)(b)

)
+ RL Ip2 H Iq2(gx,y)(t).

For computational convenience, we set

M1 =
|β1|
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

)
H Iq1 RL Ip1(1)(b)

+
|β4|
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

)
(b− a)p1

Γ(p1 + 1)
+ H Iq1 RL Ip1(1)(b), (19)

M2 =
|β2|
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

)
(log(b/a))q2

Γ(q2 + 1)

+
|β3|
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

)
RL Ip2 H Iq2(1)(b), (20)

M3 =
|β1|
|Ω|

(
|α4|
|α3|
|Ω4|+

|α1|
|α2|
|Ω3|

(b− a)p2

Γ(p2 + 1)

) (H Iq1 RL Ip1(1)(b)
)

+
|β4|
|Ω|

(
|α4|
|α3|
|Ω2|+

|α1|
|α2|
|Ω1|

(b− a)p2

Γ(p2 + 1)

)
(b− a)p1

Γ(p1 + 1)
, (21)

M4 =
|β2|
|Ω|

(
|α4|
|α3|
|Ω4|+

|α1|
|α2|
|Ω3|

(b− a)p2

Γ(p2 + 1)

)
(log(b/a))q2

Γ(q2 + 1)

+
|β3|
|Ω|

(
|α4|
|α3|
|Ω2|+

|α1|
|α2|
|Ω1|

(b− a)p2

Γ(p2 + 1)

)
RL Ip2 H Iq2(1)(b) + RL Ip2 H Iq2(1)(b). (22)

Note that all information of Problem (2) is contained in constants Mi, i = 1, 2, 3, 4, which are
used to establish the following existence theorems. Banach’s contraction mapping principle is applied
in the first result to prove the existence and uniqueness of solutions of System (2).

Theorem 1. Suppose that f , g : [a, b]×R×R→ R are continuous functions. In addition, we assume that:

(H1) there exist constants mi, ni, i = 1, 2, such that for all t ∈ [a, b] and xi, yi ∈ R, i = 1, 2

| f (t, x1, y1)− f (t, x2, y2)| ≤ m1|x1 − x2|+ m2|y1 − y2|

and
|g(t, x1, y1)− g(t, x2, y2)| ≤ n1|x1 − x2|+ n2|y1 − y2|.

Then, System (2) has a unique solution on [a, b], if

(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2) < 1. (23)

Proof. Define supt∈[a,b] f (t, 0, 0) = N1 < ∞ and supt∈[a,b] g(t, 0, 0) = N2 < ∞, such that

r >
(M1 + M3)N1 + (M2 + M4)N2

1− [(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2)]
.
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Now, we show that the set KBr ⊂ Br, where Br = {(x, y) ∈ X×Y : ‖(x, y)‖ ≤ r}. For (x, y) ∈ Br,
we have that

|K1(x, y)(t)|

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(t/a))q1

Γ(q1 + 1)

) (
|β1| H Iq1 RL Ip1 | fx,y|(b)

+ |β2| H Iq2 |gx,y|(b)
)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(t/a))q1

Γ(q1 + 1)

)
×
(
|β3| RL Ip2 H Iq2 |gx,y|(b) + |β4| RL Ip1 | fx,y|(b)

)
+ H Iq1 RL Ip1 | fx,y|(b)

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

) (
|β1| H Iq1 RL Ip1(| fx,y − f0,0|+ | f0,0|)(b)

+ |β2| H Iq2(|gx,y − g0,0|+ |g0,0|)(b)
)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

)
×
(
|β3| RL Ip2 H Iq2(|gx,y − g0,0|+ |g0,0|)(b) + |β4| RL Ip1(| fx,y − f0,0|

+ | f0,0|)(b)
)
+ H Iq1 RL Ip1(| fx,y − f0,0|+ | f0,0|)(b)

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

) (
|β1| H Iq1 RL Ip1(m1‖x‖+ m2‖y‖

+ N1)(b) + |β2| H Iq2(n1‖x‖+ n2‖y‖+ N2)(b)
)
+

1
|Ω|

(
|Ω1|

+ |Ω2|
(log(b/a))q1

Γ(q1 + 1)

)(
|β3| RL Ip2 H Iq2(n1‖x‖+ n2‖y‖+ N2)(b)

+ |β4| RL Ip1(m1‖x‖+ m2‖y‖+ N1)(b)
)
+ H Iq1 RL Ip1(m1‖x‖

+m2‖y‖+ N1)(b)

= M1(m1‖x‖+ m2‖y‖+ N1) + M2(n1‖x‖+ n2‖y‖+ N2)

= (M1m1 + M2n1)‖x‖+ (M1m2 + M2n2)‖y‖+ M1N1 + M2N2

≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2.

Hence,
‖K1(x, y)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2.

By direct computation, we get

K2(x, y)(t) ≤ 1
|Ω|

(
|α4|
|α3|
|Ω4|+

|α1|
|α2|
|Ω3|

(b− a)p2

Γ(p2 + 1)

) (
|β1|(m1‖x‖+ m2‖y‖

+ N1)
H Iq1 RL Ip1(1)(b) + |β2|(n1‖x‖+ n2‖y‖+ N2)

H Iq2(1)(b)
)

+
1
|Ω|

(
|α4|
|α3|
|Ω2|+

|α1|
|α2|
|Ω1|

(b− a)p2

Γ(p2 + 1)

) (
|β3|(n1‖x‖+ n2‖y‖

+ N2)
RL Ip2 H Iq2(1)(b) + |β4|(m1‖x‖+ m2‖y‖+ N1)

RL Ip1(1)(b)
)

+ (n1‖x‖+ n2‖y‖+ N2)
RL Ip2 H Iq2(1)(b)

= M3(m1‖x‖+ m2‖y‖+ N1) + M4(n1‖x‖+ n2‖y‖+ N2),

and
‖K2(x, y)‖ ≤ [M3(m1 + m2) + M4(n1 + n2)]r + M3N1 + M4N2.

Consequently, it follows that

‖K(x, y)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2

+[M3(m1 + m2) + M4(n1 + n2)]r + M3N1 + M4N2 ≤ r,
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which implies KBr ⊂ Br. Next, we show that operator K is contraction mapping. For any
(x1, y1), (x2, y2) ∈ X×Y, we obtain

|K1(x1, y1)(t)−K1(x2, y2)(t)|

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(t/a))q1

Γ(q1 + 1)

) (
|β1| H Iq1 RL Ip1 | fx1,y1 − fx2,y2 |(b)

+ |β2| H Iq2 |gx1,y1 − gx2,y2 |(b)
)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(t/a))q1

Γ(q1 + 1)

)
×
(
|β3| RL Ip2 H Iq2 |gx1,y1 − gx2,y2 |(b) + |β4| RL Ip1 | fx1,y1 − fx2,y2 |(b)

)
+H Iq1 RL Ip1 | fx1,y1 − fx2,y2 |(b)

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

) (
|β1| (m1‖x1 − x2‖+ m2‖y1 − y2‖

× H Iq1 RL Ip1(1)(b) + |β2|(n1‖x1 − x2‖+ n2‖y1 − y2‖)H Iq2(1)(b)
)

+
1
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

) (
|β3| (n1‖x1 − x2‖+ n2‖y1 − y2‖)

× RL Ip2 H Iq2(1)(b) + |β4| (m1‖x1 − x2‖+ m2‖y1 − y2‖)RL Ip1(1)(b)
)

+(m1‖x1 − x2‖+ m2‖y1 − y2‖)H Iq1 RL Ip1(1)(b)

= M1(m1‖x1 − x2‖+ m2‖y1 − y2‖) + M2(n1‖x1 − x2‖+ n2‖y1 − y2‖)
= (M1m1 + M2n1)‖x1 − x2‖+ (M1m2 + M2n2)‖y1 − y2‖.

Therefore, we get the following inequality:

‖K1(x1, y1)−K1(x2, y2)‖ ≤ M1(m1 + m2) + M2(n1 + n2) (‖x1 − x2‖+ ‖y1 − y2‖) . (24)

In addition, we obtain

‖K2(x1, y1)−K2(x2, y2)‖ ≤ M3(m1 + m2) + M4(n1 + n2) (‖x1 − x2‖+ ‖y1 − y2‖) . (25)

From Inequalities (24) and (25), it yields

‖K(x1, y1)−K(x2, y2)‖ ≤ [(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2)]

× (‖x1 − x2‖+ ‖y1 − y2‖) .

As (M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2) < 1, therefore K is a contraction operator.
By applying Banach’s fixed-point theorem, operator K has a unique fixed point in Br. Hence, there
exists a unique solution of Problem (2) on [a, b]. The proof is completed.

Now, we prove our second existence result via the Leray–Schauder alternative.

Lemma 4. (Leray-Schauder alternative) [22]. Let F : E→ E be a completely continuous operator. Let

ξ(F) = {x ∈ E : x = λF(x) f or some 0 < λ < 1}.

Then, either set ξ(F) is unbounded, or F has at least one fixed point.

Theorem 2. Assume that there exist real constants ui, vi ≥ 0 for i = 1, 2 and u0, v0 > 0, such that for any
xi ∈ R, (i = 1, 2) we have

| f (t, x1, x2)| ≤ u0 + u1|x1|+ u2|x2|,
|g(t, x1, x2)| ≤ v0 + v1|x1|+ v2|x2|.
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If (M1 + M3)u1 + (M2 + M4)v1 < 1 and (M1 + M3)u2 + (M2 + M4)v2 < 1, where M1, M2, M3, M4 are
given in Equations (19)–(22), then Problem (2) has at least one solution on [a, b].

Proof. By continuity of functions f , g on [a, b]×R×R, operator K is continuous. Now, we show that
the operator K : X×Y → X×Y is completely continuous. Let Φ ⊂ X×Y be bounded. Then, there
exist two positive constants, L1 and L2, such that

| f (t, x, y)| ≤ L1, |g(t, x, y)| ≤ L2, ∀(x, y) ∈ Φ.

Then, for any (x, y) ∈ Φ, we have

|K1(x, y)(t)| ≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(t/a))q1

Γ(q1 + 1)

) (
|β1| H Iq1 RL Ip1 | fx,y|(b)

+ |β2| H Iq2 |gx,y|(b)
)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(t/a))q1

Γ(q1 + 1)

)
×
(
|β3| RL Ip2 H Iq2 |gx,y|(b) + |β4| RL Ip1 | fx,y|(b)

)
+ H Iq1 RL Ip1 | fx,y|(b)

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

) (
|β1| L1

H Iq1 RL Ip1(1)(b)

+ |β2| L2
H Iq2(1)(b)

)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

)
×
(
|β3| L2

RL Ip2 H Iq2(1)(b) + |β4| L1
RL Ip1(1)(b)

)
+ L1

H Iq1 RL Ip1(1)(b),

which yields

‖K1(x, y)‖ ≤ L1M1 + L2M2.

In addition, we obtain that

‖K2(x, y)‖ ≤ 1
|Ω|

(
|α4|
|α3|
|Ω4|+

|α1|
|α2|
|Ω3|

(b− a)p2

Γ(p2 + 1)

) (
|β1|L1

H Iq1 RL Ip1(1)(b)

+ |β2|L2
H Iq2(1)(b)

)
+

1
|Ω|

(
|α4|
|α3|
|Ω2|+

|α1|
|α2|
|Ω1|

(b− a)p2

Γ(p2 + 1)

)
×
(
|β3|L2

RL Ip2 H Iq2(1)(b) + |β4|L1
RL Ip1(1)(b)

)
+ L2

RL Ip2 H Iq2(1)(b)

= L1M3 + L2M4.

Hence, from the above inequalities, we get that set KΦ is uniformly bounded. Next, we prove
that set KΦ is equicontinuous. For any (x, y) ∈ Φ, and τ1, τ2 ∈ [a, b] such that τ1 < τ2, we have
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|K1(x, y)(τ2)−K1(x, y)(τ1)|

≤
(

|Ω4|
|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(
|β1| H Iq1 RL Ip1 | fx,y|(b) + |β2| H Iq2 |gx,y|(b)

)
+

(
|Ω2|

|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(
|β3| RL Ip2 H Iq2 |gx,y|(b) + |β4| RL Ip1 | fx,y|(b)

)
+
∣∣∣H Iq1 RL Ip1 | fx,y|(τ2)− H Iq1 RL Ip1 | fx,y|(τ1)

∣∣∣
≤

(
|Ω4|

|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(

L1 |β1| H Iq1 RL Ip1(1)(b) + L2 |β2| H Iq2(1)(b)
)

+

(
|Ω2|

|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(

L2 |β3| RL Ip2 H Iq2(1)(b) + L1 |β4| RL Ip1(1)(b)
)

+
L1

Γ(q1)Γ(p1 + 1)

∣∣∣∣∣
∫ τ1

a

[(
log

τ2

s

)q1−1
−
(

log
τ1

s

)q1−1
]

× (s− a)p1
ds
s
+
∫ τ2

τ1

(
log

τ2

s

)q1−1
(s− a)p1

ds
s

∣∣∣∣∣
=

(
|Ω4|

|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(

L1 |β1| H Iq1 RL Ip1(1)(b) + L2 |β2| H Iq2(1)(b)
)

+

(
|Ω2|

|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(

L2 |β3| RL Ip2 H Iq2(1)(b) + L1 |β4| RL Ip1(1)(b)
)

+
L1(b− a)p1

Γ(q1 + 1)Γ(p1 + 1)

[
2
(

log
τ2

τ1

)q1
+
∣∣∣( log

τ2

a

)q1
−
(

log
τ1

a

)q1
∣∣∣].

Therefore, we obtain

|K1(x, y)(τ2)−K1(x, y)(τ1)| → 0, as τ1 → τ2.

Analogously, we can get the following inequality:

|K2(x, y)(τ2)−K2(x, y)(τ1)| → 0, as τ1 → τ2.

Hence, set KΦ is equicontinuous. By applying the Arzelá–Ascoli theorem, set KΦ is relatively
compact, which implies that operator K is completely continuous. Lastly, we show that set ξ =

{(x, y) ∈ X × Y : (x, y) = λK(x, y), 0 ≤ λ ≤ 1} is bounded. Now, let (x, y) ∈ ξ, then we obtain
(x, y) = λK(x, y), which yields, for any t ∈ [a, b],

x(t) = λK1(x, y)(t), y(t) = λK2(x, y)(t).
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Then, we have

‖x‖ ≤ (u0 + u1‖x‖+ u2‖y‖)M1 + (v0 + v1‖x‖+ v2‖y‖)M2,

‖y‖ ≤ (u0 + u1‖x‖+ u2‖y‖)M3 + (v0 + v1‖x‖+ v2‖y‖)M4,

which imply that

‖x‖+ ‖y‖ ≤ (M1 + M3)u0 + (M2 + M4)v0 + [(M1 + M3)u1 + (M2 + M4)v1] ‖x‖
+ [(M1 + M3)u2 + (M2 + M4)v2] ‖y‖.

Thus, we get the inequality

‖(x, y)‖ ≤ (M1 + M3)u0 + (M2 + M4)v0

M∗
, (26)

where M∗ = min{1− (M1 + M3)u1− (M2 + M4)v1, 1− (M1 + M3)u2− (M2 + M4)v2}, which shows
that set ξ is bounded. Therefore, by applying Lemma 4, operator K has at least one fixed point in Φ.
Therefore, we deduce that Problem (2) has at least one solution on [a, b]. The proof is complete.

The last-existence theorem is based on Krasnoselskii’s fixed-point theorem.

Lemma 5. (Krasnoselskii’s fixed-point theorem) [23] Let M be a closed, bounded, convex, and nonempty subset
of a Banach space X. Let A, B be operators, such that (i) Ax + By ∈ M where x, y ∈ M, (ii) A is compact and
continuous, and (iii) B is a contraction mapping. Then, there exists z ∈ M, such that z = Az + Bz.

Theorem 3. Assume that f , g : [a, b] × R → R are continuous functions satisfying assumption (H1) in
Theorem 1. In addition we suppose and there exist two positive constants P, Q such that for all t ∈ [a, b] and
xi, yi ∈ R, i = 1, 2,

| f (t, x1, x2)| ≤ P and |g(t, x1, x2)| ≤ Q. (27)

If (
(m1 + m2)

H Iq1 RL Ip1(1)(b) + (n1 + n2)
RL Ip2 H Iq2(1)(b)

)
< 1, (28)

then the problem (2) has at least one solution on [a, b].

Proof. Let Bδ = {(x, y) ∈ X × Y : ‖(x, y)‖ ≤ δ} be a ball, where a constant δ ≥ max{M1P +

M2Q, M3P + M4Q}. To apply Lemma 5, we decompose operator K into four operators K1,1,K1,2,K2,1,
and K2,2 on Bδ as
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K1,1(x, y)(t) = − 1
Ω

(
Ω3 + Ω4

(log(t/a))q1

Γ(q1 + 1)

)
×
(

β1
H Iq1 RL Ip1( fx,y)(b) + β2

H Iq2(gx,y)(b)
)

+
1
Ω

(
Ω1 −Ω2

(log(t/a))q1

Γ(q1 + 1)

)
×
(

β3
RL Ip2 H Iq2(gx,y)(b) + β4

RL Ip1( fx,y)(b)
)

,

K1,2(x, y)(t) = H Iq1 RL Ip1( fx,y)(t),

K2,1(x, y)(t) =
1
Ω

(
α4

α3
Ω4 +

α1

α2
Ω3

(t− a)p2

Γ(p2 + 1)

)
×
(

β1
H Iq1 RL Ip1( fx,y)(b) + β2

H Iq2(gx,y)(b)
)

+
1
Ω

(
α4

α3
Ω2 −

α1

α2
Ω1

(t− a)p2

Γ(p2 + 1)

)
×
(

β3
RL Ip2 H Iq2(gx,y)(b) + β4

RL Ip1( fx,y)(b)
)

,

K2,2(x, y)(t) = RL Ip2 H Iq2(gx,y)(t).

Note that K1(x, y)(t) = K1,1(x, y)(t) + K1,2(x, y)(t) and K2(x, y)(t) = K2,1(x, y)(t) +
K2,2(x, y)(t). In addition, observe that ball Bδ is a closed, bounded, and convex subset of Banach space
C. Now, we show that KBδ ⊂ Bδ for satisfying condition (i) of Lemma 5. Setting x = (x1, x2), y =

(y1, y2) ∈ Bδ, and using Condition (27), we then have

|K1,1(x1, x2)(t) +K1,2(y1, y2)(t)|

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(t/a))q1

Γ(q1 + 1)

)(
|β1| H Iq1 RL Ip1 | fx1,x2 |(b) + |β2| H Iq2 |gx1,x2 |(b)

)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(t/a))q1

Γ(q1 + 1)

)(
|β3| RL Ip2 H Iq2 |gx1,x2 |(b) + |β4| RL Ip1 | fx1,x2 |(b)

)
+ H Iq1 RL Ip1 | fy1,y2 |(t)

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

)(
P |β1| H Iq1 RL Ip1(1)(b) + Q |β2| H Iq2(1)(b)

)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

)(
Q |β3| RL Ip2 H Iq2(1)(b) + P |β4| RL Ip1(1)(b)

)
+ P H Iq1 RL Ip1(1)(b)

= M1P + M2Q ≤ δ.

Furthermore, we can find that

|K2,1(x1, x2)(t) +K2,2(y1, y2)(t)|

≤ 1
|Ω|

(
|α4|
|α3|
|Ω4|+

|α1|
|α2|
|Ω3|

(b− a)p2

Γ(p2 + 1)

)(
P|β1|H Iq1 RL Ip1(1)(b) + Q|β2|H Iq2(1)(b)

)
+

1
|Ω|

(
|α4|
|α3|
|Ω2|+

|α1|
|α2|
|Ω1|

(b− a)p2

Γ(p2 + 1)

)
×
(

Q|β3|RL Ip2 H Iq2(1)(b) + P|β4|RL Ip1(1)(b)
)
+ Q RL Ip2 H Iq2(1)(b)

= M3P + M4Q ≤ δ.

That yields (K1,1,K2,1)x + (K1,2,K2,2)y ∈ Bδ. To show that operator (K1,2,K2,2) is a contraction
mapping satisfying condition (iii) of Lemma 5, for (x1, y1), (x2, y2) ∈ Bδ, we have
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|K1,2(x1, y1)(t)−K1,2(x2, y2)(t)|
≤ H Iq1 RL Ip1 | fx1,y1 − fx2,y2 |(t)
≤ (m1‖x1 − x2‖+ m2‖y1 − y2‖)H Iq1 RL Ip1(1)(b) (29)

≤ (m1 + m2)
H Iq1 RL Ip1(1)(b)(‖x1 − x2‖+ ‖y1 − y2‖),

and

|K2,2(x1, y1)(t)−K2,2(x2, y2)(t)|
≤ RL Ip2 H Iq2 |gx1,y1 − gx2,y2 |(b) (30)

≤ (n1 + n2)
RL Ip2 H Iq2(1)(b)(‖x1 − x2‖+ ‖y1 − y2‖).

It follows Form (29) and (30) that

‖(K1,2,K2,2)(x1, y1)− (K1,2,K2,2)(x2, y2)‖

≤
(
(m1 + m2)

H Iq1 RL Ip1(1)(b) + (n1 + n2)
RL Ip2 H Iq2(1)(b)

)
(‖x1 − x2‖+ ‖y1 − y2‖),

which is a contraction by inequality in (28). Therefore, condition (iii) of Lemma 5 is satisfied. Finally
we show that operator (K1,1,K2,1) satisfied the condition (ii) of Lemma 5. By applying the continuity
of functions f , g on [a, b]×R×R, we can conclude that operator (K1,1,K2,1) is continuous. For each
(x, y) ∈ Bδ, one has

|K1,1(x, y)(t)|

≤ 1
|Ω|

(
|Ω3|+ |Ω4|

(log(b/a))q1

Γ(q1 + 1)

)(
P |β1| H Iq1 RL Ip1(1)(b) + Q |β2| H Iq2(1)(b)

)
+

1
|Ω|

(
|Ω1|+ |Ω2|

(log(b/a))q1

Γ(q1 + 1)

)(
Q |β3| RL Ip2 H Iq2(1)(b) + P |β4| RL Ip1(1)(b)

)
:= P∗,

and

|K2,1(x, y)(t)|

≤ 1
|Ω|

(
|α4|
|α3|
|Ω4|+

|α1|
|α2|
|Ω3|

(b− a)p2

Γ(p2 + 1)

) (
P|β1|H Iq1 RL Ip1(1)(b) + Q|β2|H Iq2(1)(b)

)
+

1
|Ω|

(
|α4|
|α3|
|Ω2|+

|α1|
|α2|
|Ω1|

(b− a)p2

Γ(p2 + 1)

) (
Q|β3|RL Ip2 H Iq2(1)(b) + P|β4|RL Ip1(1)(b)

)
:= Q∗.

Then, we obtain the following fact

‖(K1,1,K2,1)(x, y)‖ ≤ P∗ + Q∗,

which implies that set (K1,1,K2,1)Bδ is uniformly bounded. Next, we show that set (K1,1,K2,1)Bδ is
equicontinuous. For τ1, τ2 ∈ [a, b], such that τ1 < τ2, and for any (x, y) ∈ Bδ, we prove that
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|K1,1(x, y)(τ2)−K1,1(x, y)(τ1)|

≤
(

|Ω4|
|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(
|β1| H Iq1 RL Ip1 | fx,y|(b) + |β2| H Iq2 |gx,y|(b)

)
+

(
|Ω2|

|Ω| Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(
|β3| RL Ip2 H Iq2 |gx,y|(b) + |β4| RL Ip1 | fx,y|(b)

)
≤

(
|Ω4|

|Ω|Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(

P |β1| H Iq1 RL Ip1(1)(b) + Q |β2| H Iq2(1)(b)
)

+

(
|Ω2|

|Ω| Γ(q1 + 1)

)
|(log(τ2/a))q1 − (log(τ1/a))q1 |

×
(

Q |β3| RL Ip2 H Iq2(1)(b) + P |β4| RL Ip1(1)(b)
)

.

Indeed, we can show that

|K2,1(x, y)(τ2)−K2,1(x, y)(τ1)|

≤
(

|α1||Ω3|
|α2| |Ω| Γ(p2 + 1)

)
|(τ2 − a)p2 − (τ1 − a)p2 |

×
(

P|β1|H Iq1 RL Ip1(1)(b) + Q|β2|H Iq2(1)(b)
)

+

(
|α1||Ω1|

|α2||Ω|Γ(p2 + 1)

)
|(τ2 − a)p2 − (τ1 − a)p2 |

×
(

Q|β3|RL Ip2 H Iq2(1)(b) + P|β4|RL Ip1(1)(b)
)

.

Thus, |(K1,1,K2,1)(x, y)(τ2) − (K1,1,K2,1)(x, y)(τ1)| tends to zero as τ1 → τ2. Therefore, set
(K1,1,K2,1)Bδ is equicontinuous. By applying the Arzelá–Ascoli theorem, operator (K1,1,K2,1)

is compact on Bδ. By application of Lemma 5, there exists z = (z1, z2) ∈ Bδ, such that z =

(K1,1,K2,1)z + (K1,2,K2,2)z. Therefore, Problem (2) has at least one solution on [a, b]. This completes
the proof.

Example 1. Consider the following coupled system of sequential Caputo and Hadamard fractional differential
equations with coupled separated boundary conditions:

CD
1
2 H D

1
3 x(t) = f (t, x(t), y(t)), t ∈ [2, 5],

H D
2
3 CD

3
4 y(t) = g(t, x(t), y(t)), t ∈ [2, 5],

x(2) + 0.2CD
3
4 y(2) = 0, 0.42x(5) + 0.5CD

3
4 y(5) = 0,

0.4y(2)− 0.17H D
1
3 x(2) = 0, 0.46y(5) + 3.5H D

1
3 x(5) = 0.

(31)

Here p1 = 1/2, p2 = 3/4, q1 = 1/3, q2 = 2/3, a = 2, b = 5, α1 = 1, α2 = 0.2, α3 = 0.4,
α4 = −0.17, β1 = 0.42, β2 = 0.5, β3 = 0.46, β4 = 0.35. From the given information, we find
that H I1/3RL I1/2(1)(5) = 10.2601, RL I3/4H I2/3(1)(5) = 3.7354 and |Ω| = 2.2846, which lead to
M1 = 20.3479, M2 = 3.5125, M3 = 10.1477, M4 = 9.6538.
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(i) Let two nonlinear functions f , g : [2, 5]×R×R −→ R be given by

f (t, x, y) =
sin2(t/π)

(14 + t)2

(
x2 + 2|x|
|x|+ 1

)
+

|y|
(t + 146)

+
1
2

, (32)

g(t, x, y) =
sin(|x|)
156 + t3 +

tan−1(y)e− sin t

6t4 + 2
+

3
4

. (33)

Since
| f (t, x1, y1)− f (t, x2, y2)| ≤

1
128
|x1 − x2|+

1
148
|y1 − y2|

and
|g(t, x1, y1)− g(t, x2, y2)| ≤

1
164
|x1 − x2|+

e
98
|y1 − y2|,

we obtain (M1 + M3)(1/128 + 1/148) + (M2 + M4)(1/164 + e/98) = 0.8867 < 1. By the conclusion
of Theorem 1, Problem (31) with Problems (32) and (33) have a unique solution on [2, 5].

(ii) Now consider functions f , g : [2, 5]×R×R −→ R defined by

f (t, x, y) =
e−t

11
+

x4 sin2 t
33(1 + |x|3) +

|y|5 cos2 t
33(1 + y4)

, (34)

g(t, x, y) =
2

(t + 1)
+

sin x
25(t + 6)

+
e−t2

tan−1 y
90 + 25t2 . (35)

It is easy to verify that | f (t, x, y)| ≤ (1/11) + (1/33)|x| + (1/33)|y| and |g(t, x, y)| ≤ (2/3) +
(1/200)|x|+ (1/190)|y|. As (M1 + M3)u1 + (M2 + M4)v1 = 0.9938 < 1 and (M1 + M3)u2 + (M2 +

M4)v2 = 0.9973 < 1, by applying Theorem 2, we get that System (31) with Systems (34) and (35) have
at least one solution on [2, 5].

(iii) Define functions f , g : [2, 5]×R×R −→ R by

f (t, x, y) =
1
4

sin2 t +
|x|e−(t−2)

40(1 + |x|) +
1
40

sin y, (36)

g(t, x, y) =
1
2

cos2 t +
1
16

tan−1 x +
|y|

16(1 + |y|) . (37)

We have | f (t, x, y)| ≤ 3/10, |g(t, x, y)| ≤ 5/8 and

| f (t, x1, y1)− f (t, x2, y2)| ≤
1

40
|x1 − x2|+

1
40
|y1 − y2|

and
|g(t, x1, y1)− g(t, x2, y2)| ≤

1
16
|x1 − x2|+

1
16
|y1 − y2|.

Then we obtain
(
(m1 + m2)

H Iq1 RL Ip1(1)(5) + (n1 + n2)
RL Ip2 H Iq2(1)(5)

)
= 0.9799 < 1. Using

Theorem 3, the problem (31) with (36) and (37) has at least one solution on [2, 5]. Observe that the
inequality (M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2) = 3.1706 > 1 and, thus, Condition (23) is not
satisfied. Therefore, Theorem 1 cannot be applied for this case.

4. Conclusions

We have proven the existence and uniqueness of solutions for a coupled system of sequential
Caputo and Hadamard fractional differential equations with coupled separated boundary conditions
by applying the Banach fixed-point theorem, Leray–Schauder nonlinear alternative, and Krasnoselakki
fixed-point theorem. We also provided examples to clarify our results.
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