On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klaričić Bakula, M.; Özdemir, M.E.; Pečarić, J. Hadamard type Inequalities for m-convex and (α,m)-Convex Functions. J. Inequalities Pure Appl. Math. 2008, 9, 12. [Google Scholar]
- Kirmaci, U.S.; Klaričić Bakula, M.; Özdemir, M.E.; Pečarić, J. Hadamard-type inequalities of s-convex functions. Appl. Math. Comput. 2007, 193, 26–35. [Google Scholar] [CrossRef]
- Kavurmaci, H.; Avci, M.; Özdemir, M.E. New inequalities of Hermite-Hadamard type for convex functions with applications. J. Inequalities Appl. 2011, 2011, 86. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, M.E.; Latif, M.A.; Akdemir, A.O. On Some Hadamard-Type Inequalities for Product of Two Convex Functions on the Co-ordinates. Turk. J. Sci. 2016, I, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M.E.; Gürbüz, M.; Kavurmacı, H. Hermite- Hadamard type inequalities for (g,φα)-convex dominated functions. J. Inequalities Appl. 2013, 2013, 184. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatices with non-local and non-singular kernel. Theory Appl. Heat Transf. Model Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I. Conformable fractional Hermite-Hadamard inequalities via preinvex functions. Tbilisi Math. J. 2017, 10, 129–141. [Google Scholar] [CrossRef]
- Dahmani, Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some New Riemann-Liouville Fractional Integral Inequalities. Int. J. Math. Math. Sci. 2014, 6, 869434. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G. Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et Alibi; Gordon and Breach Science Publisher: Langhorne, PA, USA, 1993. [Google Scholar]
- Zhang, X.; Chen, Y.Q. Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 < α < 1 case. ISA Trans. 2018, 82, 42–50. [Google Scholar]
- Zhang, J.-X.; Yang, G.-H. Fault-tolerant output-constrained control of unknown Euler-Lagrange systems with prescribed tracking accuracy. Automatica 2020, 111, 108606. [Google Scholar] [CrossRef]
- Vinales, A.D.; Desposito, M.A. Anomalous diffusion induced by a Mittag-Leffler correlated noise. Phys. Rev. E 2007, 75, 042102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandev, T.; Tomovski, Z. Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise. Phys. Scr. 2010, 82, 065001. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Özata, F. Grüss Type Inequalities for Fractional Integral Operator Involving the Extended Generalized Mittag Leffler Function. Appl. Comput. Math. 2020, 19, 402–414. [Google Scholar]
- Özdemir, M.E.; Ekinci, A.; Akdemir, A.O. Some new integral inequalities for functions whose derivatives of absolute values are convex and concave. TWMS J. Pure Appl. Math. 2019, 2, 212–224. [Google Scholar]
- Ekinci, A.; Özdemir, M.E. Some New Integral Inequalities Via Riemann Liouville Integral Operators. Appl. Comput. Math. 2019, 3, 288–295. [Google Scholar]
- Aliev, F.A.; Aliev, N.A.; Safarova, N.A. Transformation of the Mittag-Leffler function to an exponential function and some of its applications to problems with a fractional derivative. Appl. Comput. Math. 2019, 18, 316–325. [Google Scholar]
- Vinales, A.D.; Paissan, G.H. Velocity autocorrelation of a free particle driven by a Mittag-Leffler noise: Fractional dynamics and temporal behaviors. Phys. Rev. E 2014, 90, 062103. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Set, E.; Akdemir, A.O.; Karaoǧlan, A.; Abdeljawad, T.; Shatanawi, W. On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators. Axioms 2021, 10, 223. https://doi.org/10.3390/axioms10030223
Set E, Akdemir AO, Karaoǧlan A, Abdeljawad T, Shatanawi W. On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators. Axioms. 2021; 10(3):223. https://doi.org/10.3390/axioms10030223
Chicago/Turabian StyleSet, Erhan, Ahmet Ocak Akdemir, Ali Karaoǧlan, Thabet Abdeljawad, and Wasfi Shatanawi. 2021. "On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators" Axioms 10, no. 3: 223. https://doi.org/10.3390/axioms10030223
APA StyleSet, E., Akdemir, A. O., Karaoǧlan, A., Abdeljawad, T., & Shatanawi, W. (2021). On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators. Axioms, 10(3), 223. https://doi.org/10.3390/axioms10030223