Numerical Solution of an Interval-Based Uncertain SIR (Susceptible–Infected–Recovered) Epidemic Model by Homotopy Analysis Method
Abstract
:1. Introduction
2. Preliminaries
- Interval Arithmetic [1]
- B.
- Closed Interval [1]
- C.
- Endpoint notation, interval equality [1]
- D.
- Midpoint of A [1]
- E.
- Interval Arithmetic and Operations [1]
- (i)
- The sum of two intervals, A and B, is the set
- (ii)
- The difference of two intervals, A and B, is the set
- (iii)
- The product of A and B is given by
- (iv)
- The quotient of A/B is defined as
3. Model Formulation
4. Interval-Based Uncertain Model
- (i)
- (ii)
- .
5. Mathematical Results
- (i)
- the solution of the zero-order deformation Equation (6) exists for all ,
- (ii)
- the deformation derivative (11) exists for all ,
- (iii)
- the series (10) converge at q = 1,
6. Homotopy Analysis Method
- (i)
- if q = 0 then ,
- (ii)
- if q = 1 then .
7. Numerical Results and Discussion
8. Stochastic Version of the Model
9. Graphical Illustration of Our Results
10. Numerical Solution of the SDE Model
11. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S | I | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (t) | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] |
0.1 | [19.095, 19.700] | 19.396 | 19.397 | [15.270, 15.875] | 15.573 | 15.587 | [10.015, 10.015] | 10.015 | 10.015 |
0.2 | [18.183, 19.398] | 18.791 | 18.791 | [15.542, 16.757] | 16.150 | 16.178 | [10.031, 10.032] | 10.032 | 10.031 |
0.3 | [17.268, 19.097] | 18.183 | 18.182 | [15.813, 17.642] | 16.728 | 16.770 | [10.046, 10.049] | 10.048 | 10.048 |
0.4 | [16.357, 18.794] | 17.576 | 17.572 | [16.086, 18.524] | 17.305 | 17.363 | [10.062, 10.067] | 10.065 | 10.065 |
0.5 | [15.452, 18.492] | 16.972 | 16.962 | [16.358, 19.398] | 17.878 | 17.955 | [10.078, 10.086] | 10.082 | 10.082 |
0.6 | [14.560, 18.190] | 16.375 | 16.354 | [16.631, 20.260] | 18.446 | 18.545 | [10.095, 10.106] | 10.101 | 10.101 |
0.7 | [13.684, 17.887] | 15.786 | 15.749 | [16.903, 21.107] | 19.418 | 19.131 | [10.112, 10.127] | 10.120 | 10.119 |
0.8 | [12.828, 17.585] | 15.207 | 15.149 | [17.176, 21.932] | 19.554 | 19.712 | [10.129, 10.148] | 10.139 | 10.139 |
0.9 | [11.997, 17.283] | 14.640 | 14.555 | [17.447, 22.734] | 20.091 | 20.286 | [10.146, 10.170] | 10.158 | 10.159 |
1.0 | [11.193, 16.982] | 14.088 | 13.969 | [17.719, 23.508] | 20.614 | 20.852 | [10.164, 10.193] | 10.179 | 10.179 |
S | I | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (t) | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] |
0.1 | [19.699, 19.700] | 19.700 | 19.700 | [15.255, 15.286] | 15.270 | 15.270 | [10.015, 10.015] | 10.015 | 10.015 |
0.2 | [19.398, 19.399] | 19.399 | 19.398 | [15.511, 15.572] | 15.542 | 15.542 | [10.031, 10.032] | 10.032 | 10.031 |
0.3 | [19.095, 19.098] | 19.097 | 19.097 | [15.767, 15.860] | 15.814 | 15.813 | [10.046, 10.049] | 10.048 | 10.048 |
0.4 | [18.792, 18.797] | 18.795 | 18.794 | [16.023, 16.148] | 16.086 | 16.086 | [10.062, 10.067] | 10.065 | 10.065 |
0.5 | [18.489, 18.496] | 18.493 | 18.492 | [16.280, 16.437] | 16.359 | 16.358 | [10.078, 10.086] | 10.082 | 10.082 |
0.6 | [18.184, 18.195] | 18.190 | 18.190 | [16.536, 16.726] | 16.631 | 16.631 | [10.095, 10.106] | 10.101 | 10.101 |
0.7 | [17.880, 17.894] | 17.887 | 17.887 | [16.792, 17.015] | 16.904 | 16.903 | [10.112, 10.127] | 10.120 | 10.119 |
0.8 | [17.576, 17.594] | 17.585 | 17.585 | [17.047, 17.304] | 17.176 | 17.176 | [10.129, 10.148] | 10.139 | 10.139 |
0.9 | [17.272, 17.294] | 17.283 | 17.283 | [17.302, 17.593] | 17.448 | 17.447 | [10.146, 10.170] | 10.158 | 10.159 |
1.0 | [16.968, 16.995] | 16.982 | 16.982 | [17.556, 17.881] | 17.719 | 17.719 | [10.164, 10.193] | 10.179 | 10.179 |
S | I | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (t) | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] |
0.1 | [19.095, 19.699] | 19.397 | 19.397 | [15.278, 15.898] | 15.588 | 15.587 | [10.008, 10.023] | 10.015 | 10.015 |
0.2 | [18.180, 19.398] | 18.789 | 18.791 | [15.556, 16.804] | 16.179 | 16.178 | [10.015, 10.048] | 10.031 | 10.031 |
0.3 | [17.263, 19.095] | 18.179 | 18.182 | [15.835, 17.713] | 16.774 | 16.770 | [10.023, 10.073] | 10.048 | 10.048 |
0.4 | [16.347, 18.793] | 17.570 | 17.572 | [16.113, 18.619] | 17.366 | 17.363 | [10.031, 10.101] | 10.066 | 10.065 |
0.5 | [15.438, 18.490] | 16.964 | 16.962 | [16.392,19.519] | 17.956 | 17.956 | [10.039, 10.129] | 10.084 | 10.082 |
0.6 | 14.541, 18.187] | 16.364 | 16.354 | [16.670, 20.406] | 18.538 | 18.545 | [10.048, 10.159] | 10.103 | 10.101 |
0.7 | [13.659, 17.884] | 15.772 | 15.749 | [16.948, 21.277] | 19.113 | 19.131 | [10.056, 10.189] | 10.123 | 10.119 |
0.8 | [12.822, 17.581] | 15.202 | 15.149 | [17.225, 22.127] | 19.676 | 19.712 | [10.065, 10.222] | 10.143 | 10.139 |
0.9 | [11.962, 17.279] | 14.620 | 14.555 | [17.502, 22.953] | 20.227 | 20.286 | [10.073, 10.256] | 10.165 | 10.159 |
1.0 | [11.152, 16.976] | 14.064 | 13.969 | [17.778, 23.750] | 20.764 | 20.852 | [10.083, 10.291] | 10.186 | 10.179 |
S | I | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (t) | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] | [min, max] | Midpoint of [min, max] | [β = 0.02, γ = 0.01] |
0.1 | [19.094, 19.699] | 19.397 | 19.399 | [15.255, 15.891] | 15.573 | 15.572 | [10.008, 10.023] | 10.015 | 10.015 |
0.2 | [18.181, 19.399] | 18.790 | 18.792 | [15.511, 16.789] | 16.149 | 16.148 | [10.015, 10.048] | 10.031 | 10.031 |
0.3 | [17.265, 19.098] | 18.181 | 18.184 | [15.767, 17.690] | 16.729 | 16.726 | [10.023, 10.073] | 10.048 | 10.048 |
0.4 | [16.350, 18.797] | 17.574 | 17.576 | [16.024, 18.589] | 17.307 | 17.304 | [10.031, 10.100] | 10.066 | 10.065 |
0.5 | [15.443, 18.496] | 16.969 | 16.968 | [16.279, 19.482] | 17.881 | 17.882 | [10.039, 10.129] | 10.084 | 10.082 |
0.6 | [14.547, 18.195] | 16.371 | 16.363 | [16.536, 20.363] | 18.500 | 18.457 | [10.048, 10.158] | 10.103 | 10.100 |
0.7 | [13.667, 17.894] | 15.780 | 15.761 | [16.792, 21.228] | 19.010 | 19.029 | [10.056, 10.189] | 10.123 | 10.119 |
0.8 | [12.807, 17.594] | 15.201 | 15.164 | [17.047, 22.073] | 19.560 | 19.597 | [10.065, 10.221] | 10.143 | 10.138 |
0.9 | [11.972, 17.294] | 14.633 | 14.573 | [17.302, 22.893] | 20.098 | 20.158 | [10.073, 10.255] | 10.164 | 10.164 |
1.0 | [11.164, 16.968] | 14.066 | 13.989 | [17.556, 23.686] | 20.621 | 20.712 | [10.082, 10.289] | 10.186 | 10.179 |
References
- Moore, R.E.R.; Baker, K.; Michael, J.C. Introduction to Interval Analysis. Society for Industrial and Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009; 235p, ISBN 978-0-898716-69-6. Available online: https://1lib.cz/book/673847/09274f (accessed on 10 December 2017).
- Tapaswini, S.; Chakraverty, S. A New Approach to Fuzzy Initial Value Problem by Improved Euler Method. Fuzzy Inf. Eng. 2012, 4, 293–312. [Google Scholar] [CrossRef]
- Tapaswini, S.; Chakraverty, S. Numerical Solution of n-th Order Fuzzy Linear Differential Equations by Homotopy Perturbation Method. Int. J. Comput. Appl. 2013, 64. [Google Scholar] [CrossRef]
- Alefeld, G.; Mayer, G. Interval analysis: Theory and applications. J. Comput. Appl. Math. 2000, 121, 421–464. [Google Scholar] [CrossRef] [Green Version]
- Hickey, T.; Ju, Q.; van Emden, M.H. Interval Arithmetic: From Principles to Implementation. J. ACM 2001, 48, 1038–1068. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.J. Homotopy Analysis Method. Available online: https://numericaltank.sjtu.edu.cn/IntroductionHAM.htm (accessed on 27 May 2021).
- Hayat, T.; Sajid, M. Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int. J. Eng. Sci. 2007, 45, 393–401. [Google Scholar] [CrossRef]
- Khan, H.; Mohapatra, R.N.; Vajravelu, K.; Liao, S. The explicit series solution of SIR and SIS epidemic models. Appl. Math. Comput. 2009, 215, 653–669. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Momoh, A.A.; Ibrahim, M.O.; Tahir, A.; Adamu, I.I. Application of homotopy analysis method for solving the SEIR models of epidemics. Nonlinear Anal. Differ. Equ. 2015, 3, 53–68. [Google Scholar] [CrossRef]
- Motsa, S.S. The homotopy analysis method solution of SIR epidemic model. J. Adv. Res. Differ. Equ. 2010, 2, 1–9. [Google Scholar]
- Bataineh, A.S.; Noorani, M.S.M.; Hashim, I. Series Solution of the Multispecies Lotka-Volterra Equations by Means of the Homotopy Analysis Method. Differ. Equ. Nonlinear Mech. 2008, 2008, 816787. [Google Scholar] [CrossRef] [Green Version]
- Ghotbi, A.R. Homotopy analysis method for solving the MHD flow over a non-linear stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2653–2663. [Google Scholar] [CrossRef]
- Odibat, Z.; Bataineh, A.S. An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: Construction of homotopy polynomials. Math. Methods Appl. Sci. 2015, 38, 991–1000. [Google Scholar] [CrossRef]
- Shivanian, E.; Abbasbandy, S. Predictor homotopy analysis method: Two points second order boundary value problems. Nonlinear Anal. Real World Appl. 2014, 15, 89–99. [Google Scholar] [CrossRef]
- Jafari, H.; Firoozjare, M.A. Multistage Homotopy Analysis Method for Solving Nonlinear Integral Equations. Appl. Appl. Math. Int. J. 2010, 34–45. Available online: https://www.pvamu.edu/aam/special-issues/august-2010/ (accessed on 10 December 2017).
- Sadaf, M.; Akram, G. An improved adaptation of homotopy analysis method. Math. Sci. 2017, 11, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Liao, S. Homotopy analysis method—A new analytic approach for highly nonlinear problems. AIP Conf. Proc. 2015, 1648, 020011. [Google Scholar] [CrossRef]
- Liao, S.J. Beyond Perturbation: Introduction to Homotopy Analysis Method; Chapman and Hall/CRC Press: Washington, DC, USA, 2003. [Google Scholar]
- Noeiaghdam, S.; Araghi, M.A.F. Application of the CESTAC Method to Find the Optimal Iteration of the Homotopy Analysis Method for Solving Fuzzy Integral Equations. In Progress in Intelligent Decision Science; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Soltani, L.A.; Shivanian, E.; Ezzati, R. Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: Exact and shooting homotopy analysis solution. Appl. Therm. Eng. 2016, 103, 537–542. [Google Scholar] [CrossRef]
- Rachah, A.; Torres, D.F.M. Predicting and controlling the Ebola infection. Math. Methods Appl. Sci. 2016, 40, 6155–6164. [Google Scholar] [CrossRef] [Green Version]
- Mengxin, H.; Zhong, L.; Fengde, C.; Zhenliang, Z. Dynamic Behaviors of an N-species Lotka-Volterra Model with Nonlinear Impulses. IAENG Int. J. Appl. Math. 2020, 50, 22–30. [Google Scholar]
- Ayub, M.; Zaman, H.; Sajid, M.; Hayat, T. Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1822–1835. [Google Scholar] [CrossRef]
- Holub, M.; Bradac, F.; Pokorny, Z.; Jelinek, A. Application of a Ballbar fordiagnostics of CNC machine tools. MM Sci. J. 2018, 2601–2605. [Google Scholar] [CrossRef]
- Biazar, J. Solution of the epidemic model by Adomian decomposition method. Appl. Math. Comput. 2006, 173, 1101–1106. [Google Scholar] [CrossRef]
- Hethcote, H.W. The Mathematics of Infectious Diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Bakare, E.; Hoskova-Mayerova, S. Optimal Control Analysis of Cholera Dynamics in the Presence of Asymptotic Transmission. Axioms 2021, 10, 60. [Google Scholar] [CrossRef]
- Vagaska, A.; Gombar, M. Mathematical Optimization and Application of Nonlinear Programming. In Algorithms as a Basis of Modern Applied Mathematics; Springer Nature: Cham, Switzerland, 2021; pp. 461–486. ISBN 978-3-030-61333-4. [Google Scholar] [CrossRef]
- Efimov, D.; Ushirobira, R. On an interval prediction of COVID-19 development based on a SEIR epidemic model. Annu. Rev. Control 2021. preprint. Available online: https://hal.inria.fr/hal-02517866v4 (accessed on 27 May 2021). [CrossRef] [PubMed]
- Li, C.; Huang, J.; Chen, Y.-H.; Zhao, H. A Fuzzy Susceptible-Exposed-Infected-Recovered Model Based on the Confidence Index. Int. J. Fuzzy Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Bao, K.; Rang, L.; Zhang, Q. Analysis of a stochastic SIRS model with interval parameter. Am. Inst. Math. Sci. (AIMS) 2019, 24, 4827–4849. [Google Scholar] [CrossRef]
- Park, S.W.; Champredon, D.; Weitz, J.S.; Dushoff, J. A Practical Generation Interval-Based Approach to Inferring the Strength of Epidemics from Their Speed. 2018. Available online: https://www.biorxiv.org/content/10.1101/312397v2.full.pdf (accessed on 28 May 2021).
- Bracher, J.; Ray, E.L.; Gneiting, T.; Reich, N.G. Evaluating epidemic forecasts in an interval format. PLoS Comput. Biol. 2021, 17, e1008618. [Google Scholar] [CrossRef]
- Bhuju, G.; Phaijoo, G.R.; Gurung, D.B. Fuzzy Approach Analyzing SEIR-SEI Dengue Dynamics. BioMed Res. Int. 2020, 2020, 1508613. [Google Scholar] [CrossRef]
- Dhandapani, P.B.; Baleanu, D.; Thippan, J.; Sivakumar, V. On stiff, fuzzy IRD-14 day average transmission model of COVID-19 pandemic disease. AIMS Bioeng. 2020, 7, 208–223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakare, E.A.; Chakraverty, S.; Potucek, R. Numerical Solution of an Interval-Based Uncertain SIR (Susceptible–Infected–Recovered) Epidemic Model by Homotopy Analysis Method. Axioms 2021, 10, 114. https://doi.org/10.3390/axioms10020114
Bakare EA, Chakraverty S, Potucek R. Numerical Solution of an Interval-Based Uncertain SIR (Susceptible–Infected–Recovered) Epidemic Model by Homotopy Analysis Method. Axioms. 2021; 10(2):114. https://doi.org/10.3390/axioms10020114
Chicago/Turabian StyleBakare, Emmanuel A., Snehashish Chakraverty, and Radovan Potucek. 2021. "Numerical Solution of an Interval-Based Uncertain SIR (Susceptible–Infected–Recovered) Epidemic Model by Homotopy Analysis Method" Axioms 10, no. 2: 114. https://doi.org/10.3390/axioms10020114
APA StyleBakare, E. A., Chakraverty, S., & Potucek, R. (2021). Numerical Solution of an Interval-Based Uncertain SIR (Susceptible–Infected–Recovered) Epidemic Model by Homotopy Analysis Method. Axioms, 10(2), 114. https://doi.org/10.3390/axioms10020114