A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment
Abstract
:1. Introduction
1.1. Literature Review
1.2. Objective and Contributions of the Work
- 1.
- New and improved operational laws are introduced for FFLNs with their properties.
- 2.
- Several new AOs such as the FFL-weighted averaging (FFLWA) operator, the FFL-weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA) operator, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator are defined for aggregating Fermatean fuzzy linguistic information.
- 3.
- A MAGDM method based on the proposed AOs is constructed to support the decision-making problems under Fermatean fuzzy linguistic environment.
- 4.
- A sensitivity analysis is also conducted to analyze the impact of different AOs on the ranking of the alternatives.
1.3. Organization of the Paper
2. Preliminaries
2.1. Linguistic Variables
- i.
- ii.
- iii.
- iv.
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
2.2. Linguistic Scale Function
2.3. Fermatean Fuzzy Linguistic Set
- (i).
- (ii).
- (iii).
- (iv).
- (v).
- (i).
- If
- (ii).
- If then: (a) (b)
- (i).
- .Here, we see that , therefore, is undefined.
- (ii).
- From Equations (9) and (10), it is clear that there is no effect of nonmembership values on the membership values ofand. In general, if, andare three different FFLNs satisfying,then we always obtainThis outcome does not match our intuition.
- (iii).
- The obtained resulting values in Equations (11) and (12) indicate that there is no effect of the membership values on the nonmembership values ofand. In general, if, andare three different FFLNs satisfying,then we always obtain. Additionally,andare undefined.From Equations (13) and (14), we can see thatandare undefined because here. Hence, andare not FFLNs.
3. Fermatean Fuzzy Aggregation Operators
3.1. Improved Operational Laws for FFLNs Based on LSF
- (i)
- (ii)
- (iii)
- (iv)
- (i).
- ;
- (ii).
- ;
- (iii).
- ;
- (iv).
- (i).
- ;
- (ii).
- (iii).
- ;
- (iv).
- ;
- (v).
- ;
- (vi).
- .
- (vii).
- (viii).
- ;
- (ix).
- ;
- (x).
- .
3.2. FFL-Weighted Average (FFLWA) Operator
3.3. FFL-Ordered Weighted Average (FFLOWA) Operator
3.4. FFL-Weighted Geometric (FFLWG) Operator
3.5. FFL-Ordered Weighted Geometric (FFLOWG) Operator
3.6. FFL-Hybrid Average (FFLHA) Operator and FFL-Hybrid Geometric (FFLHG) Operator
4. An Approach to MAGDM Making with Fermatean Fuzzy Linguistic Information
4.1. MAGDM Problem Description
4.2. Decision Method
4.3. Numerical Example
4.4. Sensitivity Analysis
4.5. A Comparative Overview of the Results Based on Different AOs
4.6. Some Advantages and Limitations of the Proposed Approach
- The formulated approach can solve decision-making problems with qualitative information data in terms of FFLNs very efficiently.
- The main limitation of this study is that it cannot handle the situations in which the attributes have some interaction and prioritization relationship between them.
- The developed study opens a new door for further research under a qualitative information environment.
- There can be some adverse situations in which the defined operational laws for FFLNs may not work. Then, we will need to undertake a further detailed investigation of the operational laws of FFLNs.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Zhou, L.; Liu, J.; Tao, Z. Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Inf. Sci. 2014, 259, 142–159. [Google Scholar] [CrossRef]
- Ma, Z.M.; Yang, W. Symmetric intuitionistic fuzzy weighted mean operators based on weighted Archimedean t-norms and t-conorms for multi-criteria decision making. Informatica 2020, 31, 89–112. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.Y.; Chen, S.M.; Fan, K.Y. Multiple attribute decision making using improved intuitionistic fuzzy weighted geometric operators of intuitionistic fuzzy values. Inf. Sci. 2020, 535, 242–253. [Google Scholar] [CrossRef]
- He, Y.; He, Z.; Chen, H. Intuitionistic fuzzy interaction Bonferroni means and its application to multiple attribute decision making. IEEE Trans. Cyber. 2015, 45, 116–128. [Google Scholar] [CrossRef]
- Verma, R. Generalized Bonferroni mean operator for fuzzy number intuitionistic fuzzy sets and its application to multiattribute decision making. Int. J. Intell. Syst. 2015, 30, 499–519. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Chen, M.S. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2018, 69, 1–24. [Google Scholar] [CrossRef]
- Liu, P.; Gao, H. Some intuitionistic fuzzy power Bonferroni mean operators in the framework of Dempster–Shafer theory and their application to multicriteria decision making. Appl. Soft Comput. 2019, 85, 105790. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. Intuitionistic fuzzy Einstein prioritized weighted average operators and their application to multiple attribute group decision making. Appl. Math. Inf. Sci. 2015, 9, 3095–3107. [Google Scholar] [CrossRef]
- Ai, Z.; Xu, Z. Intuitionistic fuzzy double integrals and their fundamental properties. IEEE Trans. Fuzzy Syst. 2018, 26, 3782–3792. [Google Scholar] [CrossRef]
- Ai, Z.; Xu, Z. Line integrals of intuitionistic fuzzy calculus and their properties. IEEE Trans. Fuzzy Syst. 2018, 26, 1435–1446. [Google Scholar] [CrossRef]
- Ai, Z.; Xu, Z. Multiple definite integrals of intuitionistic fuzzy calculus and isomorphic mappings. IEEE Trans. Fuzzy Syst. 2018, 26, 670–680. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L. New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Inf. Sci. 2013, 245, 181–196. [Google Scholar] [CrossRef]
- Ngan, R.T.; Son, L.H.; Cuong, B.C.; Ali, M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl. Soft Comput. J. 2018, 69, 393–425. [Google Scholar] [CrossRef]
- Mahanta, J.; Panda, S. A novel distance measure for intuitionistic fuzzy sets with diverse applications. Int. J. Intell. Syst. 2021, 36, 615–627. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, Z.; Zhao, H.; Zhang, R. The context-based distance measure for intuitionistic fuzzy set with application in marine energy transportation route decision making. Appl. Soft Comput. 2021, 101, 107044. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Quan, W.; Huang, W. A new approach to construct similarity measure for intuitionistic fuzzy sets. Soft Comput. 2019, 23, 1985–1998. [Google Scholar] [CrossRef]
- Boran, F.E.; Akay, D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inf. Sci. 2014, 255, 45–57. [Google Scholar] [CrossRef]
- Raji-Lawal, H.Y.; Akinwale, A.T.; Folorunsho, O.; Mustapha, A.O. Decision support system for dementia patients using intuitionistic fuzzy similarity measure. Soft Comput. Lett. 2020, 2, 100005. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S. A novel dice similarity measure for IFSs and its applications in pattern and face recognition. Expert Syst. Appl. 2020, 149, 113245. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. Exponential entropy on intuitionistic fuzzy sets. Kybernetika 2013, 49, 114–127. [Google Scholar]
- Verma, R.; Sharma, B.D. On intuitionistic fuzzy entropy of order-α. Adv. Fuzzy Syst. 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Sharma, B.D. R-norm entropy on intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 2015, 28, 327–335. [Google Scholar] [CrossRef]
- Thao, N.X. Some new entropies and divergence measures of intuitionistic fuzzy sets based on Archimedean t-conorm and application in supplier selection. Soft Comput. 2021, 25, 5791–5805. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. On generalized intuitionistic fuzzy divergence (relative information) and their properties. J. Uncertain Syst. 2012, 6, 308–320. [Google Scholar]
- Verma, R.; Sharma, B.D. Intuitionistic fuzzy Jensen-Rényi divergence: Applications to multiple-attribute decision making. Informatica 2013, 37, 399–409. [Google Scholar]
- Mishra, A.R.; Singh, R.K.; Motwani, D. Intuitionistic fuzzy divergence measure-based ELECTRE method for performance of cellular mobile telephone service providers. Neural Comput. Appl. 2020, 32, 3901–3921. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. A new measure of inaccuracy with its application to multi-criteria decision making under intuitionistic fuzzy environment. J. Intell. Fuzzy Syst. 2014, 27, 1811–1824. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Wei, G.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
- Yang, Y.; Chin, K.; Ding, H.; Lv, H.; Li, Y. Pythagorean fuzzy Bonferroni means based on T-norm and its dual T-conorm. Int. J. Intell. Syst. 2019, 34, 1303–1336. [Google Scholar] [CrossRef]
- Akram, M.; Ilyas, F.; Al-Kenani, N.A. Two-phase group decision-aiding system using ELECTRE III method in Pythagorean fuzzy environment. Arab. J. Sci. Eng. 2021, 46, 3549–3566. [Google Scholar] [CrossRef]
- Ejegwa, P.A. Modified Zhang and Xu’s distance measure for Pythagorean fuzzy sets and its application to pattern recognition problems. Neural Comput. Appl. 2020, 32, 10199–10208. [Google Scholar] [CrossRef]
- Molla, M.U.; Giri, B.C.; Biswas, P. Extended PROMETHEE method with Pythagorean fuzzy sets for medical diagnosis problems. Soft Comput. 2021, 25, 4503–4512. [Google Scholar] [CrossRef]
- Bakioglu, G.; Atahan, A.O. AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Appl. Soft Comput. 2021, 99, 106948. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R.R. Fermatean fuzzy sets. J. Ambient Intell. Humaniz. Comput. 2019. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R.R. Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica 2019, 30, 391–412. [Google Scholar] [CrossRef] [Green Version]
- Senapati, T.; Yager, R.R. Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 2019, 85, 112–121. [Google Scholar] [CrossRef]
- Aydemir, S.B.; Yilmaz Gunduz, S. Fuzzy TOPSIS method with Dombi aggregation operators and its application in multi-criteria decision making. J. Intell. Fuzzy Syst. 2020, 39, 851–869. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Pandey, K. Fermatean fuzzy CRITIC-EDAS approach for the selection of sustainable third-party reverse logistics providers using improved generalized score function. J. Ambient. Intell. Humaniz. Comput. 2021, 1, 1. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 1975, 9, 43–80. [Google Scholar] [CrossRef]
- Wang, J.B.; Li, H.B. Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy numbers. Control Decis. 2010, 25, 1571–1574. [Google Scholar]
- Liu, P. Some generalized dependent aggregation operators with intuitionistic linguistic numbers and their application to group decision making. J. Comput. Syst. Sci. 2013, 79, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wang, Y. Multiple attribute group decision making methods based on intuitionistic linguistic power generalized aggregation operators. Appl. Soft Comput. J. 2014, 17, 90–104. [Google Scholar] [CrossRef]
- Su, W.; Li, W.; Zeng, S.; Zhang, C. Atanassov’s intuitionistic linguistic ordered weighted averaging distance operator and its application to decision making. J. Intell. Fuzzy Syst. 2014, 26, 1491–1502. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Wang, J. An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 2018, 25, 781–805. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Chen, X. Fermatean fuzzy linguistic set and its application in multicriteria decision making. Int. J. Intell. Syst. 2019, 34, 878–894. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Wang, L. Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods. Int. J. Intell. Syst. 2019, 34, 2807–2834. [Google Scholar] [CrossRef]
- Herrera, F.; Martínez, L. A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2001, 31, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177, 2363–2379. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, J.T.; Wang, J.; Zhang, H.Y.; Chen, X.H. Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 2014, 288, 55–72. [Google Scholar] [CrossRef]
- Liao, H.; Qin, R.; Gao, C.; Wu, X.; Hafezalkotob, A.; Herrera, F. Score-HeDLiSF: A score function of hesitant fuzzy linguistic term set based on hesitant degrees and linguistic scale functions: An application to unbalanced hesitant fuzzy linguistic MULTIMOORA. Inf. Fusion 2019, 48, 39–54. [Google Scholar] [CrossRef]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Chiclana, F.; Herrera, F.; Herrera-Viedma, E. The ordered weighted geometric operator: Properties and application in MCDM problems. In Proceedings of the 8th Conference Information Processing and Management of Uncertainty in Knowledge based Systems (IPMU), Madrid, Spain, 3–7 July 2000; pp. 985–991. [Google Scholar]
- Xu, Z.; Da, Q.L. An overview of operators for aggregating information. Int. J. Intell. Syst. 2003, 18, 953–969. [Google Scholar] [CrossRef]
- Xu, Z. An overview of methods for determining OWA weights. Int. J. Intell. Syst. 2005, 20, 843–865. [Google Scholar] [CrossRef]
- Parkan, C.; Wu, M.L. Decision-making and performance measurement models with applications to robot selection. Comput. Ind. Eng. 1999, 36, 503–523. [Google Scholar] [CrossRef]
Operation | |||
Operation | |
The Operator Used in Step 2 | The Operator Used in Step 3 | Score Values | Ranking of the Suppliers | ||||
FFLOWA | FFLWA | 0.2641 | 0.6284 | 0.1562 | 0.2511 | 0.2385 | |
FFLWG | 0.2407 | 0.4832 | 0.1679 | 0.2501 | 0.2030 | ||
FFLHA | 0.2618 | 0.6245 | 0.1568 | 0.2513 | 0.2235 | ||
FFLHG | 0.2427 | 0.5334 | 0.1704 | 0.2484 | 0.2165 | ||
FFLOWG | FFLWA | 0.2408 | 0.4812 | 0.1765 | 0.2369 | 0.2228 | |
FFLWG | 0.2143 | 0.4602 | 0.1923 | 0.2363 | 0.1934 | ||
FFLHA | 0.2385 | 0.4665 | 0.1804 | 0.2366 | 0.2151 | ||
FFLHG | 0.2125 | 0.4236 | 0.1873 | 0.2282 | 0.1899 |
LSF | The Operator Used in Step 2 | The Operator Used in Step 3 | Score Values | Ranking of the Suppliers | ||||
FFLOWA | FFLWA | 0.2813 | 0.6283 | 0.1610 | 0.2616 | 0.2414 | ||
FFLWG | 0.2531 | 0.4785 | 0.1702 | 0.2564 | 0.1797 | |||
FFLHA | 0.2905 | 0.6120 | 0.1602 | 0.3027 | 0.2336 | |||
FFLHG | 0.2523 | 0.4719 | 0.1686 | 0.2516 | 0.1813 | |||
FFLOWG | FFLWA | 0.2368 | 0.5157 | 0.1629 | 0.2309 | 0.2074 | ||
FFLWG | 0.2002 | 0.4793 | 0.1752 | 0.2265 | 0.1629 | |||
FFLHA | 0.2373 | 0.5013 | 0.1638 | 0.2500 | 0.1929 | |||
FFLHG | 0.2000 | 0.4386 | 0.1722 | 0.2373 | 0.1560 | |||
FFLOWA | FFLWA | 0.2913 | 0.6283 | 0.1591 | 0.3061 | 0.2448 | ||
FFLWG | 0.2554 | 0.5060 | 0.1669 | 0.2891 | 0.1695 | |||
FFLHA | 0.2905 | 0.6120 | 0.1602 | 0.3027 | 0.2336 | |||
FFLHG | 0.2569 | 0.4772 | 0.1661 | 0.2779 | 0.1718 | |||
FFLOWG | FFLWA | 0.2398 | 0.5270 | 0.1537 | 0.2319 | 0.2009 | ||
FFLWG | 0.1931 | 0.4864 | 0.1650 | 0.2274 | 0.1901 | |||
FFLHA | 0.2412 | 0.5124 | 0.1554 | 0.2337 | 0.1907 | |||
FFLHG | 0.1942 | 0.4455 | 0.1640 | 0.2232 | 0.1481 |
Aggregation Operator Used | The Closeness Coefficient Values | Ranking of the Suppliers | ||||
FFLWA | 0.3803 | 0.6109 | 0.2222 | 0.3317 | 0.3529 | |
FFLWG | 0.3942 | 0.5856 | 0.2063 | 0.3396 | 0.3412 |
FFLOWA+ FFLWA | FFLOWA + FFLWG | FFLOWA + FFLHA | FFLOWA + FFLHG | FFLOWG + FFLWA | FFLOWG + FFLWG | FFLOWG + FFLHA | FFLOWG + FFLHG | |
FFLOWA+ FFLWA | 1 | 0.1 | 0.1 | 1 | 1 | −0.3 | 0.1 | −0.3 |
FFLOWA+ FFLWG | 0.1 | 1 | 1 | 0.1 | 0.1 | 0.6 | 1 | 0.6 |
FFLOWA+ FFLHA | 0.1 | 1 | 1 | 0.1 | 0.1 | 0.6 | 1 | 0.6 |
FFLOWA+ FFLHG | 1 | 0.1 | 0.1 | 1 | 1 | −0.3 | 0.1 | −0.3 |
FFLOWG+ FFLWA | 1 | 0.1 | 0.1 | 1 | 1 | −0.3 | 0.1 | −0.3 |
FFLOWG+ FFLWG | −0.3 | 0.6 | 0.6 | −0.3 | −0.3 | 1 | 0.6 | 1 |
FFLOWG+ FFLHA | 0.1 | 1 | 1 | 0.1 | 0.1 | 0.6 | 1 | 0.6 |
FFLOWG+ FFLHG | −0.3 | 0.6 | 0.6 | −0.3 | −0.3 | 1 | 0.6 | 1 |
FFLOWA+ FFLWA | FFLOWA + FFLWG | FFLOWA + FFLHA | FFLOWA + FFLHG | FFLOWG + FFLWA | FFLOWG + FFLWG | FFLOWG + FFLHA | FFLOWG + FFLHG | |
FFLOWA+ FFLWA | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 |
FFLOWA+ FFLWG | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 |
FFLOWA+ FFLHA | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 |
FFLOWA+ FFLHG | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 |
FFLOWG+ FFLWA | 1 | 0.1 | 1 | 0.1 | 0.1 | 0.1 | 1 | 0.1 |
FFLOWG+ FFLWG | 0.1 | 1 | 1 | 1 | 0.1 | 1 | 0.1 | 1 |
FFLOWG+ FFLHA | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 |
FFLOWG+ FFLHG | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 |
FFLOWA+ FFLWA | FFLOWA+ FFLWG | FFLOWA + FFLHA | FFLOWA+ FFLHG | FFLOWG+ FFLWA | FFLOWG+ FFLWG | FFLOWG+ FFLHA | FFLOWG+ FFLHG | |
FFLOWA+ FFLWA | 1 | 1 | 1 | 1 | 0.1 | 1 | 0.1 | 0.6 |
FFLOWA+ FFLWG | 1 | 1 | 1 | 1 | 0.1 | 1 | 0.1 | 0.6 |
FFLOWA+ FFLHA | 1 | 1 | 1 | 1 | 0.1 | 1 | 0.1 | 0.6 |
FFLOWA+ FFLHG | 1 | 1 | 1 | 1 | 0.1 | 1 | 0.1 | 0.6 |
FFLOWG+ FFLWA | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1 | −0.3 |
FFLOWG+ FFLWG | 1 | 1 | 1 | 1 | 0.1 | 1 | 0.1 | 0.6 |
FFLOWG+ FFLHA | 0.1 | 0.1 | 0.1 | 0.1 | 1 | 0.1 | 1 | −0.3 |
FFLOWG+ FFLHG | 0.6 | 0.6 | 0.6 | 0.6 | −0.3 | 0.6 | −0.3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, R. A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment. Axioms 2021, 10, 113. https://doi.org/10.3390/axioms10020113
Verma R. A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment. Axioms. 2021; 10(2):113. https://doi.org/10.3390/axioms10020113
Chicago/Turabian StyleVerma, Rajkumar. 2021. "A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment" Axioms 10, no. 2: 113. https://doi.org/10.3390/axioms10020113
APA StyleVerma, R. (2021). A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment. Axioms, 10(2), 113. https://doi.org/10.3390/axioms10020113