Differential Karst Control of Carbonate Reservoirs: A Case Study of the Fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi, Sichuan Basin, SW China
Abstract
1. Introduction
2. Geological Setting

3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Characteristics of Karst Paleogeomorphology and Paleo-Water System
4.1.1. Paleogeomorphology Recovery Methods
4.1.2. Paleogeomorphology Recovery Results
4.1.3. Characteristics of Paleo-Water System
4.2. Identification of Paleokarst Characteristics
4.2.1. Identification of Paleokarst Characteristics in Cores and Thin Sections
4.2.2. Logging Response Characteristics of Paleokarst Vugs and Caves
4.3. Distribution Characteristics of Karst Reservoirs
4.3.1. Single-Well Reservoir Statistics
4.3.2. Stratigraphic Correlation
4.4. Geochemical Characteristics
4.4.1. Major Elements
4.4.2. Trace Elements
4.4.3. Carbon and Oxygen Isotopes
4.4.4. Fluid Inclusions
5. Discussion
5.1. Geochemical Constraints on Karstification and Paleoenvironment
5.1.1. Major and Trace Elements
5.1.2. Carbon and Oxygen Isotopes
5.1.3. Fluid Inclusion Microthermometry
5.2. Differential Characteristics of Paleokarstification in Platform Margin and Intraplatform
5.2.1. Eogenetic Meteoric Water Karst
5.2.2. Supergene Karst
5.2.3. Coastal Mixed Water Karst
5.2.4. Buried Karst
5.3. Controlling Factors of Karst Reservoirs Differences Between the Platform Margin and Intraplatform
5.3.1. Soluble Rock Controls on Reservoir Quality Difference
5.3.2. The Karst Paleogeomorphology Controls the Differential Distribution of Karst Reservoirs
5.3.3. Different Types of Paleokarstification Resulting in Karst Reservoir Differences
5.4. Differential Karst Development Model
6. Conclusions
- (1)
- The fourth member of Dengying Formation in Gaoshiti-Moxi area experienced eogenetic meteoric water karst, supergene karst, coastal mixed water karst, and burial karst. Large-scale dissolved fractures and caves are mainly controlled by meteoric water karstification, resulting in three main types of reservoir spaces: vug type, fracture-vug type, and cave type. Dolomite and quartz fillings are mainly formed in the medium-deep burial period.
- (2)
- There are differences in paleokarstification between the platform margin and the intraplatform. Four types of paleokarstification are developed in the fourth member of Dengying Formation in the platform margin, while the mixed water karst is not developed in the intraplatform. Eogenetic meteoric water karst and supergene karst in the platform margin are stronger than those in the intraplatform. Burial karst shows no notable difference between the two zones.
- (3)
- The controlling factors of karst reservoir differences between the platform margin and intraplatform are the thickness of soluble rock (mound-shoal complex), karst paleogeomorphology, and different types of paleokarstification. Soluble rocks are more extensively developed in the platform margin. The hydrodynamic conditions controlled by the karst paleogeomorphology are strong in the platform margin, leading to the development of high-quality reservoirs. The intraplatform develops karst lakes, characterized by weaker hydrodynamics, leading to relatively poorer reservoir quality. The area with strong hydrodynamic conditions and a thick mound-shoal complex is a favorable area for the development of high-quality reservoirs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, D.; Cao, J.; Luo, B.; Tan, X.C.; Liu, H.; Zhang, B.J.; Yang, X. On the dolomite reservoirs formed by dissolution: Differential eogenetic versus hydrothermal in the lower Permian Sichuan Basin, southwestern China. AAPG Bull. 2020, 104, 1405–1438. [Google Scholar] [CrossRef]
- Li, J.Z.; Tao, X.W.; Bai, B.; Huang, S.P.; Jiang, Q.C.; Zhao, Z.Y.; Chen, Y.Y.; Ma, D.B.; Zhang, L.P.; Li, N.X. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Pet. Explor. Dev. 2021, 48, 52–67. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.C.; Wen, L.; Xie, W.R.; Fu, X.D.; Li, W.Z. Sinian hydrocarbon accumulation conditions and exploration potential at the northwest margin of the Yangtze region, China. Pet. Explor. Dev. 2022, 49, 238–248. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Z.C.; Ming, X.Y.; Jiang, L. Profitable Diagenetic Path and Reservoir Formation Efficiency of the Sinian-Lower Cambrian Dolostone: Origins of deep dolomites and differential reservoir formation. Acta Sedimentol. Sin. 2024, 42, 2159–2173. [Google Scholar]
- Zhou, Z.; Wang, X.Z.; Yin, G.; Yuan, S.S.; Zeng, S.J. Characteristics and genesis of the (Sinian) Dengying Formation reservoir in Central Sichuan, China. J. Nat. Gas Sci. Eng. 2016, 29, 311–321. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, F.L.; Ji, Y.L.; Zhou, X.F.; Zhang, C.H. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China. Precambrian Res. 2020, 343, 105708. [Google Scholar] [CrossRef]
- Xu, Z.H.; Lan, C.J.; Zhang, B.J.; Hao, F.; Lu, C.J.; Tian, X.W.; Zou, H.Y. Impact of diagenesis on the microbial reservoirs of the terminal Ediacaran Dengying Formation from the Central to Northern Sichuan Basin, SW China. Mar. Pet. Geol. 2022, 146, 105924. [Google Scholar] [CrossRef]
- Yan, R.J.; Xu, G.S.; Xu, F.H.; Song, J.M.; Yuan, H.F.; Luo, X.P.; Fu, X.D.; Cao, Z.Y. The multistage dissolution characteristics and their influence on mound–shoal complex reservoirs from the Sinian Dengying Formation, southeastern Sichuan Basin, China. Mar. Pet. Geol. 2022, 139, 105596. [Google Scholar] [CrossRef]
- Zhou, J.G.; Zhang, J.Y.; Deng, H.Y.; Chen, Y.N.; Hao, Y.; Li, W.Z.; Gu, M.F.; Luo, X.Y. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin. Nat. Gas Ind. 2017, 37, 24–31. [Google Scholar] [CrossRef]
- Chen, H.W.; Wang, S.L.; Mansour, A.; Qin, Q.; Ahmed, M.S.; Cen, Y.; Liang, F.; He, Y.; Fan, Y.; Gentzis, T. Key Characteristics and Controlling Factors of the Gas Reservoir in the Fourth Member of the Ediacaran Dengying Formation in the Penglai Gas Field, Sichuan Basin. Minerals 2025, 15, 98. [Google Scholar] [CrossRef]
- Ma, X.H.; Yan, H.J.; Chen, J.Y.; He, D.B.; Xu, W. Development patterns and constraints of superimposed karst reservoirs in Sinian Dengying Formation, Anyue gas field, Sichuan Basin. Oil Gas Geol. 2021, 42, 1281–1294. [Google Scholar]
- Yang, W.; Wu, S.J.; Wei, G.Q.; Xie, W.R.; Jin, H.; Zeng, F.Y.; Su, N.; Sun, A.; Ma, S.Y.; Shen, Y.H. Hydrocarbon accumulation and exploration prospect of mound-shoal complexes on the platform margin of the fourth member of Sinian Dengying Formation in the east of Mianzhu-Changning intracratonic rift, Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 1174–1184. [Google Scholar] [CrossRef]
- Tan, Q.; Yuan, H.F.; Wang, T.; Ma, Z.L.; Tang, B.J.; Peng, Q.; Li, W.J. Genesis and impact of dissolution in deep dolomite reservoirs: A case of the 2nd member of the Sinian Dengying Formation, Penglai area, central Sichuan Basin. Oil Gas Geol. 2025, 46, 809–826. [Google Scholar]
- Liu, H.; Luo, S.C.; Tan, X.C.; Li, L.; Lian, C.B.; Zeng, W.; Luo, B.; Shan, S.J. Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China. Pet. Explor. Dev. 2015, 42, 283–293. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Qiao, Y.P.; Dou, S.; Li, K.Y.; Zhong, Y.; Wu, L.Y.; Zhang, B.S.; Dai, X.; Jin, X.; Wang, B. Karst paleogeomorphology and reservoir control model of the 2nd member of Dengying Formation in Penglai gas area, Sichuan Basin, China. Oil Gas Geol. 2024, 45, 200–214. [Google Scholar]
- Wang, W.Z.; Yang, Y.M.; Wen, L.; Luo, B.; Luo, W.J.; Xia, M.L.; Sun, S.N. A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan Basin. Geol. China 2016, 43, 306–318. [Google Scholar]
- Chen, Y.N.; Shen, A.J.; Pan, L.Y.; Zhang, J.; Wang, X.F. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China. Pet. Explor. Dev. 2017, 44, 704–715. [Google Scholar] [CrossRef]
- Liu, S.G.; Yu, Y.Q.; Long, Y.; Wan, Y.B.; Song, J.M.; Luo, P.; Qing, H.R.; Lin, T.; Sun, W.; Li, Z.W. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2016, 43, 129–152. [Google Scholar]
- Song, J.M.; Liu, S.G.; Li, Z.W.; Luo, P.; Yang, D.; Sun, W.; Peng, H.L.; Yu, Y.Q. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China. Oil Gas Geol. 2017, 38, 741–752. [Google Scholar]
- Liu, Q.Y.; Zhu, D.Y.; Jin, Z.J.; Liu, C.Y.; Zhang, D.W.; He, Z.L. Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs-An example from Sinian Dengying Formation in Sichuan Basin, southern China. Precambrian Res. 2016, 285, 39–57. [Google Scholar] [CrossRef]
- Feng, M.Y.; Wu, P.C.; Qiang, Z.T.; Liu, X.H.; Duan, Y.; Xia, M.L. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, Southwestern China. Mar. Pet. Geol. 2017, 82, 206–219. [Google Scholar] [CrossRef]
- Ma, B.S.; Liang, H.; Wu, G.H.; Tang, Q.S.; Tian, W.Z.; Zhang, C.; Yang, S.; Zhong, Y.; Zhang, X.; Zhang, Z.L. Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 333–345. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.F.; Wang, C.W.; Li, P.P.; Guo, T.L. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China. Earth-Sci. Rev. 2015, 141, 154–177. [Google Scholar] [CrossRef]
- Cai, C.F.; Hu, G.Y.; Li, H.X.; Jiang, L.; He, W.X.; Zhang, B.S.; Jia, L.Q.; Wang, T.K. Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area: Evidence from sulfur isotopes, fluid inclusions and production data. Mar. Pet. Geol. 2015, 67, 408–418. [Google Scholar] [CrossRef]
- Zhang, X.H.; Peng, H.L.; Tian, X.W.; Zhao, L.Z.; Huang, P.H.; Wang, H.; Ma, K.; Yang, D.L.; Wang, Y.L.; Zhang, X.; et al. Influence of difference among bioherm beach facies reservoirs on exploration model: An example from Sinian Dengying Formation, central Sichuan Basin. Nat. Gas Explor. Dev. 2019, 42, 13–21. [Google Scholar]
- Yang, C.Y.; Yu, B.; Zhang, J.F.; Wang, T.G.; Li, M.J.; Ni, Z.Y. Differential diagenetic evolution of Sinian Dengying Formation reservoirs in Anyue gas field, Central Sichuan Uplift, Sichuan Basin. Pet. Geol. Exp. 2025, 47, 754–766. [Google Scholar]
- Yan, H.J.; He, D.B.; Jia, A.L.; Li, Z.P.; Guo, J.L.; Peng, X.; Meng, F.K.; Li, X.Y.; Zhu, Z.M.; Deng, H.; et al. Characteristics and development model of karst reservoirs in the fourth member of Sinian Dengying Formation in central Sichuan Basin, SW China. Pet. Explor. Dev. 2022, 49, 704–715. [Google Scholar] [CrossRef]
- Ma, K.; Wen, L.; Zhang, B.J.; Li, Y.; Zhong, J.Y.; Wang, Y.L.; Peng, H.L.; Zhang, X.H.; Yan, W.; Ding, Y. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China. Pet. Explor. Dev. 2022, 49, 274–284. [Google Scholar] [CrossRef]
- Liu, J.L.; Liu, K.Y.; Li, C.W.; Liu, W.J. Tectono-sedimentary evolution of the Late Ediacaran to early Cambrian trough in central Sichuan Basin, China: New insights from 3D stratigraphic forward modelling. Precambrian Res. 2020, 350, 105826. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.X.; Wang, Z.C.; Xie, W.R.; Li, W.Z.; Gu, M.F.; Liang, Z.R. Geological characteristics of the southern segment of the Late Sinian–Early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 285–296. [Google Scholar] [CrossRef]
- Xia, M.L.; Wen, L.; Luo, B.; Xu, S.Y.; Zhang, X.H.; Zhu, Y. Tectono-sedimentary mechanism and evolution model of the Deyang-Anyue intracratonic rift in Sichuan Basin. Nat. Gas Ind. 2025, 45, 50–67. [Google Scholar]
- Zhang, X.H.; Peng, H.L.; Wen, L.; Li, Y.; Zhong, J.Y.; Ma, K.; Luo, B.; Tian, X.W. Discovery of deep-water deposits in Northwest Sichuan Basin during Dengyingian period: Implications for petroleum geology. Nat. Gas Explor. Dev. 2020, 43, 10–21. [Google Scholar]
- Zhang, B.J.; Ma, H.L.; Li, W.Z.; Zhang, Y.; Zhang, Z.L.; Yan, W.; Zeng, Y.Y.; Wang, X.; Zhong, Y.; Li, K.Y. Reservoir characteristics and main controlling factors in the second member of the Dengying Formation in the Penglai Gas Field, Sichuan Basin. Nat. Gas Geosci. 2023, 34, 1899–1915. [Google Scholar]
- Tan, L.; Liu, H.; Chen, K.; Ni, H.L.; Zhou, G.; Zhang, X.; Yan, W.; Zhong, Y.; Lyu, W.Z.; Tan, X.C.; et al. Sequence sedimentary evolution and reservoir distribution in the third and fourth members of Sinian Dengying Formation, Gaomo area, Sichuan Basin, SW China. Pet. Explor. Dev. 2022, 49, 871–883. [Google Scholar] [CrossRef]
- Li, Y.S.; Liu, G.D.; Song, Z.H.; Sun, M.L.; Tian, X.W.; Yang, D.L.; Wang, Y.L.; Zhu, L.Q.; You, F.L. Constraints of C–O–Sr isotope and elemental geochemistry on the origin of dolomite of the deeply buried Ediacaran sedimentary succession, central Sichuan Basin (SW China). J. Asian Earth Sci. 2023, 255, 105780. [Google Scholar] [CrossRef]
- Li, C.W.; Liu, K.Y.; Liu, J.L. A petroliferous Ediacaran microbial-dominated carbonate reservoir play in the central Sichuan Basin, China: Characteristics and diagenetic evolution. Precambrian Res. 2023, 384, 106937. [Google Scholar] [CrossRef]
- Liu, K.Y.; Liu, J.L. Application of basin modeling method coupling sedimentary filling evolution with petroleum system in simulating ultra-deep oil-gas accumulations: A case study of Sinian Dengying Formation in central Sichuan Basin. Acta Pet. Sin. 2023, 44, 1445–1458. [Google Scholar]
- Zhu, C.Y.; Gao, D.; Hu, M.Y.; Xie, W.R.; Dai, Y.C.; Zhao, Y.R. Properties and Influencing Factors of Eogenetic Karst Reservoirs from Formation Micro-scanner Imagery Facies Analysis: A case study of the Fourth member of the Dengying Formation. Acta Sedimentol. Sin. 2025, 43, 198–211. [Google Scholar]
- Jin, M.D.; Tan, X.C.; Tong, M.S.; Zeng, W.; Liu, H.; Zhong, B.; Liu, Q.S.; Lian, C.B.; Zhou, X.H.; Xu, F.; et al. Karst paleogeomorphology of the fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin, SW China: Restoration and geological significance. Pet. Explor. Dev. 2017, 44, 58–68. [Google Scholar] [CrossRef]
- Liu, X.X.; Dan, Y.; Luo, W.J.; Liang, B.; Xu, L.; Nie, G.Q.; Ji, S.C. Characterization of karst paleo-geomorphology and the paleo-water system on the top of the 4th member of the Dengying formation in the Gaoshiti area, Sichuan basin. Carsol. Sin. 2020, 39, 206–214. [Google Scholar]
- Xia, Q.Y.; Yan, H.J.; Xu, W.; Zhang, L.; Luo, W.J.; Deng, H.; Yu, J.C. Paleokarst microtopography of the Sinian top and its development characteristics in Moxi area, central Sichuan Basin. Acta Pet. Sin. 2021, 42, 1299–1309, 1366. [Google Scholar]
- Nie, G.Q.; Zhang, Q.Y.; He, D.F.; Li, X.P.; Ji, S.C. Geochemical characteristics and paleoenvironmental significance of karst reservoirs in Gaoyuzhuang-Wumishan Formations of Jixian System in Xiong ‘an New Area and its adjacent areas. Front. Earth Sci. 2025, 13, 1624161. [Google Scholar] [CrossRef]
- Kinaman, D.J.J. Interpretation of Sr2+ Concentrations in Carbonate Minerals and Rocks. J. Sediment. Petrol. 1969, 39, 486–508. [Google Scholar]
- Baker, P.A.; Brun, S.J. Occurrence and formation of dolomite in organic rich continental margin sediments. AAPG Bull. 1985, 69, 1917–1930. [Google Scholar] [CrossRef]
- Ren, Y.; Zhong, D.K.; Liu, H.L.; Liang, T.; Sun, H.T.; Gao, C.L.; Zheng, X.W. Isotopic and elemental evidence for paleoenvironmental evolution of Cambrian stage 4 Longwangmiao formation, east Chongqing. China. Earth Sci. 2018, 43, 4066–4095. [Google Scholar]
- Veizer, J. Chemical diagenesis of carbonates: Theory and application of trace element technique. In Stable Isotopes in Sedimentary Geology; Arthur, M.A., Anderson, T.F., Kaplan, I.R., Eds.; Society of Economic Paleontologists & Mineralogists: Tulsa, OK, USA, 1983; Volume 10. [Google Scholar]
- Dan, Y.; Nie, G.Q.; Liang, B.; Zhang, Q.Y.; Li, J.R.; Dong, H.Q.; Ji, S.C. The source of fracture-cave mud fillings of the Ordovician yingshan Formation and its paleokarst environment in the northern slope of the tazhong uplift, Tarim Basin, China: Based on petrology and geochemical analysis. Minerals 2021, 11, 1329. [Google Scholar] [CrossRef]
- Brasier, M.D.; Magaritz, M.; Corfield, R.; Huilin, L.; Xiche, W.; Lin, O.; Zhiwen, J.; Hamdi, B.; Tinggui, H.; Fraser, A.G. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geol. Mag. 1990, 127, 319–332. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Qiang, Z.T. Carbonate Reservoir Geology; Press of the University of Petroleum: Dongying, China, 1998; pp. 27–54. [Google Scholar]
- Ren, Y.; Zhong, D.K.; Gao, C.L.; Yang, X.Q.; Xie, R.; Li, Z.P.; Deng, M.X.; Zhou, Y.C. Geochemical characteristics, genesis and hydrocarbon significance of dolomite in the Cambrian Longwangmiao Formation, eastern Sicuhan Basin. Acta Petro. Sin. 2016, 37, 1102–1115. [Google Scholar]
- Fairchild, I.J.; Spiro, B. Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen. Sedimentology 1987, 34, 973–989. [Google Scholar] [CrossRef]
- Zempolich, W.G.; Wilkinson, B.H.; Lohmann, K.C. Diagenesis of late Proterozoic carbonates; the beck spring dolomite of eastern California. J. Sediment. Res. 1988, 58, 656–672. [Google Scholar] [CrossRef]
- Vasconcelos, C.; McKenzie, J.A.; Warthmann, R.; Bernasconi, S. Calibration of the δ18O paleo-thermometer with dolomite formed in microbial cultures and natural environments. Geology 2005, 33, 317–320. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Knoll, A.H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res. 1995, 73, 27–49. [Google Scholar] [CrossRef]
- Zajacz, Z.; Seo, J.H.; Candela, P.A.; Piccoli, P.M.; Tossell, J.A. Thesolubility of copper in high-temperature magmatic vapors: A quest for the significance of various chloride and sulfide complexes. Geochim. Cosmochim. Acta 2011, 75, 2811–2827. [Google Scholar] [CrossRef]
- Dan, Y.; Liang, B.; Cao, J.W.; Zhang, Q.Y. Analysis of Palaeokarst Periods and its Environmental in Lunnan Ordovician of Tarim Basin: From Fluid Inclusion Test of Calcite in Fracture or Vug. Xinjiang Geol. 2015, 33, 95–100. [Google Scholar]
- Shi, Y.Z.; Wang, Z.C.; Xu, Q.C.; Hu, S.B.; Huang, S.P.; Jiang, H.; Jiang, Q.C.; Fu, X.D.; Li, W.Z.; Liu, R.H.; et al. Reconstruction and application of thermal history of old strata in superimposed basin: A case study on the Sinian-Cambrian in the central Sichuan paleo-uplift of the Sichuan Basin. Nat. Gas Ind. 2024, 44, 29–43. [Google Scholar]
- Qiu, N.S.; Chang, J.; Zhu, C.Q.; Liu, W.; Zuo, Y.H.; Xu, W.; Li, D. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Sci. Rev. 2022, 224, 103884. [Google Scholar] [CrossRef]
- He, L.J. Thermal evolution of the Upper Yangtze Craton: Secular cooling and short-lived thermal perturbations. Phys. Earth Planet. Inter. 2020, 301, 106458. [Google Scholar] [CrossRef]
- Dong, S.F.; Chen, D.Z.; Zhou, X.Q.; Qian, Y.X.; Tian, M.; Qing, H.R. Tectonically driven dolomitization of cambrian to lower ordovician carbonates of the Quruqtagh area, North-Eastern Flank of Tarim Basin. North-West China. Sedimentology 2017, 64, 1106. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.F.; Wang, X.Z.; Zeng, D.M.; Feng, M.Y.; Xie, L.; Li, X. Pore-fillings of dolomite reservoirs in Sinian Dengying Formationin Sichuan basin. Petroleum 2020, 6, 14–22. [Google Scholar] [CrossRef]
- Scholle, P.A.; Ulmer-Scholle, D.S. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis; AAPG Memoir: Tulsa, OK, USA, 2003; Volume 77. [Google Scholar]
- Zhao, D.F.; Tan, X.C.; Luo, W.J.; Wang, X.F.; Xu, W.; Luo, S.C.; Tang, D.H.; Luo, Y.; Zeng, W. Karst characteristics at early diagenetic stage and their enlightenment for the origin of ancient deep carbonate reservoirs: A case study of the Member 4 of Dengying Formation in Moxi 8 well area, central Sichuan. Acta Pet. Sin. 2022, 43, 1236–1252. [Google Scholar]
- Grimes, K.G. Syngenetic karst in Australia: A review. Helictite 2006, 39, 27–38. [Google Scholar]
- Wang, Z.C.; Jiang, H.; Wang, T.S.; Lu, W.H.; Gu, Z.D.; Xu, A.N.; Yang, Y.; Xu, Z.H. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation. Pet. Explor. Dev. 2014, 41, 338–345. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.Z.; Feng, M.Y.; Zeng, D.M.; Xie, S.Y.; Fan, R.; Wang, L.J.; Zeng, T.; Yang, X.F. Reservoir characteristics and genetic differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas. Pet. Explor. Dev. 2019, 46, 54–66. [Google Scholar] [CrossRef]
- Wen, L.; Wang, W.Z.; Zhang, J.; Luo, B. Classification of Sinian Dengying Formation and sedimentary evolution mechanism of Gaoshiti-Moxi area in central Sichuan Basin. Acta Pet. Sin. 2017, 33, 1285–1294. [Google Scholar]
- Xia, Q.Y.; Ma, X.H.; Guo, Z.H.; Li, W.; Jiang, L.; Li, X.Y.; Liu, X.X.; Luo, R.L.; Yan, H.J.; Liu, Y.Y.; et al. Distribution characteristics of paleokarst zones and internal reservoirs in the fourth Member of Dengying Formation in Gaoshiti block, central Sichuan Basin. Acta Pet. Sin. 2023, 44, 1299–1312, 1332. [Google Scholar]
- Mylroie, J.E.; Carew, J.L. Karst development on carbonate islands. In Speleogenesis and Evolution of Karst Aquifers; National Speleological Society: Huntsville, AL, USA, 2003; Volume 1, pp. 1–21. [Google Scholar]
- Smart, P.L.; Beddows, P.A.; Smith, S.; Whitaker, F.F. Cave Development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. Spec. Pap.-Geol. Soc. Am. 2006, 404, 105–128. [Google Scholar]
- Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Langhorne, B.; Smith, J.L.B. Origin and reservoir characteristics of Upper Ordovician Trenton-Black River hydrothermal dolomite reservoirs in New York. AAPG Bull. 2006, 90, 1691–1718. [Google Scholar]
- Lonnee, J.; Machel, H.G. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke lake gas field, middle Devonian Slave point formation, British Columbia, Canada. AAPG Bull. 2006, 90, 1739–1761. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.H.; Feng, Y.X.; Zhao, J.X.; Wang, Z.C.; Hu, M.Y.; Jiang, H.; Nguyen, A.D. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, Central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events. Precambrian Res. 2022, 368, 106481. [Google Scholar] [CrossRef]
- He, X.; Tang, Q.S.; Wu, G.H.; Li, F.; Tian, W.Z.; Luo, W.J.; Ma, B.S.; Su, C. Control of strike-slip faults on Sinian carbonate reservoirs in Anyue gas field, Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 1116–1127. [Google Scholar] [CrossRef]
- Lu, X.S.; Gui, L.N.; Wang, Z.C.; Liu, S.B.; Liu, Q.; Fan, J.J.; Chen, W.Y.; Ma, X.Z.; Jiang, H.; Fu, X.D.; et al. Activity time of strike-slip faults and their controlling effects on hydrocarbon accumulation in central Sichuan Basin: Evidence from U-Pb dating and fluid inclusions of cements in fault zone. Acta Pet. Sin. 2024, 45, 642–658. [Google Scholar]













| Sample No. | Well Name | Depth (m) | Lithology | Major Elements (%) | MgO/CaO | Trace Elements (ppm) | Sr/Ba | Mn/Sr | Mn/Fe | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO | Sr | Mn | Fe | Ni | Co | Ba | V | ||||||||
| 1 | GS102 | 5030.37 | Cave fillings | 17.18 | 3.39 | 22.62 | 3.85 | 0.60 | 0.21 | 0.09 | 27.96 | 0.03 | 0.17 | 337.42 | 233.71 | 9618 | 19.30 | 1.46 | 336.22 | 388.41 | 1.00 | 0.69 | 0.02 |
| 2 | GS102 | 5039.54 | Dolomite fillings | 12.93 | 1.51 | 8.63 | 13.66 | 0.02 | 2.02 | 0.05 | 0.08 | 0.04 | 1.58 | 45.73 | 330.30 | 6426 | 1.63 | 0.21 | 128.54 | 4.76 | 0.36 | 7.22 | 0.05 |
| 3 | GS102 | 5062.65 | Argillaceous dolomite | 21.34 | 1.59 | 17.80 | 17.65 | 0.05 | 0.12 | 0.05 | 0.08 | 0.05 | 0.99 | 39.50 | 352.37 | 5607 | 7.51 | 0.70 | 143.96 | 7.08 | 0.27 | 8.92 | 0.06 |
| 4 | GS102 | 5076.59 | Micritic dolomite | 10.40 | 1.53 | 19.65 | 19.79 | 0.04 | 0.13 | 0.05 | 0.06 | 0.06 | 1.01 | 41.03 | 430.76 | 4956 | 2.10 | 0.31 | 441.05 | 5.45 | 0.09 | 10.50 | 0.09 |
| 5 | GS102 | 5088.02 | Argillaceous dolomite | 13.22 | 1.94 | 19.42 | 19.18 | 0.16 | 0.12 | 0.06 | 0.58 | 0.04 | 0.99 | 47.76 | 288.55 | 6069 | 5.90 | 0.83 | 322.39 | 15.85 | 0.15 | 6.04 | 0.05 |
| 6 | GS102 | 5106.52 | Siliceous dolomite | 92.23 | 2.19 | 0.78 | 0.55 | 0.12 | 0.17 | 0.06 | 0.23 | 0.05 | 0.71 | 8.65 | 367.60 | 8547 | 4.06 | 1.05 | 191.08 | 2.65 | 0.05 | 42.50 | 0.04 |
| 7 | GS102 | 5143.54 | Argillaceous dolomite | 24.65 | 2.04 | 17.12 | 17.16 | 0.19 | 0.11 | 0.06 | 0.16 | 0.04 | 1.00 | 41.47 | 303.30 | 5544 | 3.44 | 0.72 | 412.05 | 6.16 | 0.10 | 7.31 | 0.05 |
| 8 | GS102 | 5191.97 | Doloarenite | 8.77 | 1.49 | 19.98 | 20.64 | 0.02 | 0.12 | 0.05 | 0.09 | 0.04 | 1.03 | 31.68 | 293.75 | 5250 | 1.60 | 0.23 | 81.39 | 2.68 | 0.39 | 9.27 | 0.06 |
| 9 | GS103 | 5177.90 | Siliceous dolomite | 54.26 | 1.53 | 10.79 | 10.32 | 0.02 | 0.10 | 0.05 | 0.02 | 0.06 | 0.96 | 74.17 | 465.10 | 6762 | 2.19 | 0.28 | 165.64 | 3.17 | 0.45 | 6.27 | 0.07 |
| 10 | GS103 | 5295.00 | Argillaceous dolomite | 8.48 | 1.49 | 19.52 | 19.95 | 0.02 | 0.10 | 0.05 | 0.03 | 0.03 | 1.02 | 88.34 | 197.93 | 5124 | 3.63 | 0.19 | 2948.98 | 10.42 | 0.03 | 2.24 | 0.04 |
| 11 | GS103 | 5297.73 | Siliceous dolomite | 78.99 | 1.62 | 2.69 | 2.84 | 0.04 | 0.12 | 0.05 | 0.01 | 0.06 | 1.06 | 15.68 | 431.82 | 9387 | 5.99 | 1.09 | 488.63 | 2.84 | 0.03 | 27.53 | 0.05 |
| 12 | GS103 | 5300.00 | Micritic dolomite | 8.70 | 1.53 | 19.83 | 20.24 | 0.04 | 0.10 | 0.05 | 0.04 | 0.02 | 1.02 | 65.42 | 178.35 | 4998 | 2.77 | 0.22 | 1028.30 | 7.95 | 0.06 | 2.73 | 0.04 |
| 13 | GS103 | 5298.50 | Dolomite fillings | 19.57 | 1.56 | 3.34 | 4.12 | 0.02 | 0.29 | 0.09 | 0.02 | 0.01 | 1.23 | 6126.64 | 41.16 | 5061 | 3.24 | 0.28 | 51,104.75 | 5.41 | 0.12 | 0.01 | 0.01 |
| 14 | GS105 | 5212.43 | Dolomite with honeycomb-shaped pores | 10.48 | 1.57 | 19.44 | 19.68 | 0.05 | 0.14 | 0.05 | 0.02 | 0.06 | 1.01 | 86.70 | 432.17 | 6090 | 2.20 | 0.30 | 3432.58 | 4.69 | 0.03 | 4.98 | 0.07 |
| 15 | GS108 | 5251.37 | Siliceous dolomite | 68.47 | 1.54 | 8.26 | 8.02 | 0.02 | 0.12 | 0.05 | 0.02 | 0.05 | 0.97 | 49.01 | 369.15 | 7077 | 1.45 | 0.36 | 196.61 | 2.24 | 0.25 | 7.53 | 0.05 |
| 16 | GS108 | 5274.60 | Doloarenite | 10.01 | 1.60 | 19.93 | 20.12 | 0.05 | 0.11 | 0.05 | 0.05 | 0.03 | 1.01 | 118.90 | 206.50 | 5376 | 1.84 | 0.18 | 174.94 | 5.23 | 0.68 | 1.74 | 0.04 |
| 17 | GS16 | 5449.89 | Limy dolomite | 8.74 | 1.75 | 20.54 | 17.94 | 0.06 | 0.15 | 0.05 | 0.14 | 0.18 | 0.87 | 101.95 | 1426.98 | 6699 | 4.03 | 0.25 | 148.81 | 12.77 | 0.69 | 14.00 | 0.21 |
| 18 | GS16 | 5450.08 | Micritic dolomite | 8.70 | 1.81 | 20.24 | 18.69 | 0.10 | 0.14 | 0.05 | 0.03 | 0.06 | 0.92 | 104.65 | 447.57 | 5628 | 3.44 | 0.24 | 58.61 | 10.26 | 1.79 | 4.28 | 0.08 |
| 19 | GS20 | 5240.12 | Argillaceous dolomite | 9.08 | 2.20 | 19.85 | 19.97 | 0.23 | 0.11 | 0.06 | 0.17 | 0.03 | 1.01 | 78.21 | 206.27 | 5796 | 4.50 | 0.64 | 150.19 | 18.24 | 0.52 | 2.64 | 0.04 |
| 20 | GS111 | 5307.90 | Micritic dolomite | 7.98 | 1.51 | 19.89 | 19.93 | 0.04 | 0.14 | 0.05 | 0.01 | 0.11 | 1.00 | 54.03 | 841.71 | 8547 | 2.22 | 0.15 | 64.36 | 4.38 | 0.84 | 15.58 | 0.10 |
| 21 | GS18 | 5141.16 | Thrombolite | 2.27 | 0.13 | 30.90 | 20.91 | 0.01 | / | 0.00 | 0.04 | 0.03 | 0.68 | 78.42 | 232.39 | 1540 | 1.57 | 0.11 | 116.86 | 5.00 | 0.67 | 2.96 | 0.15 |
| 22 | GS119 | 5585.87 | Micritic dolomite | 5.86 | 0.05 | 29.72 | 19.89 | / | / | 0.00 | 0.09 | 0.05 | 0.67 | 90.19 | 387.32 | 3710 | 1.11 | 0.06 | 125.27 | 2.76 | 0.72 | 4.29 | 0.10 |
| 23 | GS119 | 5597.34 | Micritic dolomite | 11.86 | 0.16 | 27.30 | 17.79 | 0.02 | / | 0.02 | 0.05 | 0.09 | 0.65 | 67.48 | 697.18 | 17,430 | 5.88 | 0.38 | 235.93 | 7.31 | 0.29 | 10.33 | 0.04 |
| 24 | GS126 | 5308.02 | Micritic dolomite | 0.12 | 0.04 | 31.77 | 21.26 | / | / | 0.00 | 0.01 | 0.11 | 0.67 | 108.30 | 852.11 | 280 | 2.23 | 0.08 | 3974.33 | 9.94 | 0.03 | 7.87 | 3.04 |
| 25 | MX127 | 5536.04 | Micritic dolomite | 3.66 | 0.47 | 31.39 | 19.75 | / | / | 0.09 | 0.05 | 0.07 | 0.63 | 113.73 | 542.25 | 7770 | 10.93 | 2.39 | 61.42 | 8.74 | 1.85 | 4.77 | 0.07 |
| 26 | MX127 | 5536.62 | Breccia-bearing dolomite (black fillings) | 2.66 | 0.49 | 31.39 | 19.93 | 0.12 | 0.03 | 0.08 | 0.02 | 0.07 | 0.63 | 108.11 | 542.25 | 6300 | 9.27 | 2.12 | 74.34 | 15.59 | 1.45 | 5.02 | 0.09 |
| 27 | MX127 | 5537.05 | White breccia | 6.85 | 0.28 | 29.41 | 19.58 | 0.05 | / | 0.00 | 0.02 | 0.08 | 0.67 | 90.93 | 619.72 | 1050 | 2.94 | 0.57 | 40.17 | 8.64 | 2.26 | 6.82 | 0.59 |
| 28 | MX127 | 5537.62 | Black fillings | 8.97 | 0.35 | 28.56 | 18.99 | 0.08 | 0.00 | 0.02 | 0.02 | 0.07 | 0.66 | 91.60 | 542.25 | 1610 | 2.87 | 0.76 | 40.05 | 10.03 | 2.29 | 5.92 | 0.34 |
| 29 | MX127 | 5538.00 | White breccia | 11.93 | 0.51 | 27.40 | 18.37 | 0.12 | / | 0.03 | 0.03 | 0.07 | 0.67 | 83.57 | 542.25 | 1820 | 3.03 | 0.93 | 55.52 | 11.30 | 1.51 | 6.49 | 0.30 |
| 30 | MX127 | 5538.03 | White breccia | 16.38 | 0.52 | 25.81 | 17.40 | 0.14 | 0.01 | 0.03 | 0.04 | 0.06 | 0.67 | 80.38 | 464.79 | 1680 | 11.63 | 1.10 | 45.29 | 12.38 | 1.77 | 5.78 | 0.28 |
| 31 | MX127 | 5538.55 | Breccias dolomite | 4.69 | 0.66 | 29.93 | 19.59 | 0.20 | / | 0.03 | 0.05 | 0.07 | 0.65 | 71.00 | 542.25 | 2240 | 6.76 | 0.76 | 98.72 | 16.25 | 0.72 | 7.64 | 0.24 |
| 32 | MX127 | 5539.08 | Breccias dolomite | 2.12 | 0.59 | 31.11 | 20.42 | 0.18 | / | 0.02 | 0.06 | 0.05 | 0.66 | 62.10 | 387.32 | 1960 | 4.72 | 0.61 | 32.30 | 7.65 | 1.92 | 6.24 | 0.20 |
| 33 | MX127 | 5540.01 | Breccias dolomite | 20.48 | 1.96 | 23.45 | 15.93 | 0.66 | / | 0.10 | 0.11 | 0.05 | 0.68 | 66.97 | 387.32 | 5320 | 5.44 | 1.39 | 62.86 | 13.88 | 1.07 | 5.78 | 0.07 |
| Sample No. | Well Name | Depth(m) | Lithology | δ13C (PDB) ‰ | δ18O (PDB) ‰ |
|---|---|---|---|---|---|
| 1 | MX39 | 5250.75 | Dolomite of Member 4 (Dengying Formation) | 1.79 | −12.05 |
| 2 | MX39 | 5251.00 | 2.02 | −10.87 | |
| 3 | MX39 | 5251.09 | 0.78 | −9.52 | |
| 4 | MX39 | 5259.77 | 0.64 | −9.44 | |
| 5 | MX39 | 5264.82 | 0.58 | −8.96 | |
| 6 | MX39 | 5264.82 | 0.72 | −8.26 | |
| 7 | GS2 | 5013.11 | 1.14 | −9.58 | |
| 8 | GS102 | 5094.47 | 1.98 | −9.96 | |
| 9 | GS102 | 5100.43 | 1.39 | −9.19 | |
| 10 | GS105 | 5212.43 | 3.11 | −11.86 | |
| 11 | GS105 | 5219.94 | 1.96 | −12.57 | |
| 12 | GS105 | 5225.00 | 3.45 | −11.85 | |
| 13 | GS108 | 5278.00 | 0.68 | −12.21 | |
| 14 | GS108 | 5278.00 | 2 | −8.7 | |
| 15 | GS111 | 5321.00 | 1.49 | −12.62 | |
| 16 | GS111 | 5321.18 | Limestone of Maidiping Formation | 1.63 | −12.75 |
| 17 | MX39 | 5245.66 | 1.37 | −10.26 | |
| 18 | MX39 | 5247.60 | 0.88 | −9.91 | |
| 19 | MX39 | 5250.00 | 0.14 | −10.39 | |
| 20 | MX39 | 5265.00 | 1.44 | −9.92 | |
| 21 | MX22 | 5412.70 | Snowflake-shaped dolomite fillings | −3.17 | −11.39 |
| 22 | GS111 | 5306.59 | 3.73 | −11.09 | |
| 23 | GS20 | 5190.89 | Vug-lining dolomite fillings | 0.66 | −13.52 |
| 24 | GS21 | 5300.77 | 0.74 | −9.16 | |
| 25 | GS102 | 5100.43 | 1.06 | −10.06 | |
| 26 | MX39 | 5300.84 | Anhedral dolomite fillings | −1.36 | −13.26 |
| 27 | MX39 | 5301.70 | −0.03 | −12.08 | |
| 28 | GS20 | 5192.24 | 0.28 | −12.24 | |
| 29 | GS102 | 5071.82 | −0.36 | −11.94 | |
| 30 | GS102 | 5100.43 | −2.86 | −13.11 | |
| 31 | GS7 | 5319.89 | Vug-filled crystalline dolomite fillings | 0 | −13.92 |
| 32 | GS7 | 5331.20 | −0.05 | −14.1 | |
| 33 | GS16 | 5450.72 | 1.25 | −12.82 | |
| 34 | GS16 | 5451.17 | −3.48 | −12.67 | |
| 35 | GS16 | 5453.35 | 1.46 | −13.56 | |
| 36 | GS16 | 5454.07 | 1.76 | −12.4 | |
| 37 | GS16 | 5460.20 | −0.52 | −12.62 | |
| 38 | GS20 | 5185.54 | 0 | −12.82 | |
| 39 | GS20 | 5188.33 | 1.5 | −12.39 | |
| 40 | GS20 | 5194.39 | 1.13 | −13.06 | |
| 41 | GS20 | 5195.22 | −0.23 | −13.12 | |
| 42 | GS20 | 5205.22 | 1.26 | −12.25 | |
| 43 | GS20 | 5255.09 | 1.44 | −12.97 | |
| 44 | GS102 | 5058.03 | 0.85 | −10.21 | |
| 45 | GS102 | 5094.47 | 2.74 | −9.59 | |
| 46 | GS102 | 5155.58 | 0.4 | −12.48 | |
| 47 | GS103 | 5177.00 | 1.66 | −13.51 | |
| 48 | GS109 | 5317.40 | −1.26 | −12.49 | |
| 49 | GS111 | 5323.79 | −1.6 | −12.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, G.; He, D.; Zhang, Q.; Li, X.; Ji, S.; Mo, G.; Zhang, M. Differential Karst Control of Carbonate Reservoirs: A Case Study of the Fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi, Sichuan Basin, SW China. Minerals 2025, 15, 1314. https://doi.org/10.3390/min15121314
Nie G, He D, Zhang Q, Li X, Ji S, Mo G, Zhang M. Differential Karst Control of Carbonate Reservoirs: A Case Study of the Fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi, Sichuan Basin, SW China. Minerals. 2025; 15(12):1314. https://doi.org/10.3390/min15121314
Chicago/Turabian StyleNie, Guoquan, Dengfa He, Qingyu Zhang, Xiaopan Li, Shaocong Ji, Guochen Mo, and Meng Zhang. 2025. "Differential Karst Control of Carbonate Reservoirs: A Case Study of the Fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi, Sichuan Basin, SW China" Minerals 15, no. 12: 1314. https://doi.org/10.3390/min15121314
APA StyleNie, G., He, D., Zhang, Q., Li, X., Ji, S., Mo, G., & Zhang, M. (2025). Differential Karst Control of Carbonate Reservoirs: A Case Study of the Fourth Member of Sinian Dengying Formation in Gaoshiti-Moxi, Sichuan Basin, SW China. Minerals, 15(12), 1314. https://doi.org/10.3390/min15121314

