Crystal-Chemical Evolution of Muscovite and Nb–Ta–Y–REE-Bearing Minerals in the Wadi Al-Baroud Granite–Pegmatite System
Abstract
1. Introduction
2. Geological Background
3. Analytical Methods
4. Results and Discussion
4.1. Petrographic and Textural Features
4.2. Composition and Crystal-Chemical Evolution of Muscovite: Substitution Mechanisms and Fluorine Enrichment
4.3. Fractionation Trends in CGMs

4.4. Compositions and Crystal-Chemical Evolution of Y–Nb–Ti Oxides
4.5. Petrogenetic Controls on Rare-Metal Enrichment
4.6. Comparison of Wadi Al-Baroud with Global Rare-Metal Pegmatite Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elsagheer, M.A.; Azer, M.K.; Moussa, H.E.; Maurice, A.E.; Sami, M.; El Maaty, M.A.A.; Akarish, A.I.; Heikal, M.T.S.; Khedr, M.Z.; Elnazer, A.A. Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield. Minerals 2025, 15, 495. [Google Scholar] [CrossRef]
- El Saeed, R.L.; Abart, R.; Ahmed, M.S.; Abdelfadil, K.M.; Farahat, E.S.; Sami, M. Petrological constraints of the Ediacaran magmatic intrusions, Homrit Mukpid area, southeastern Desert, Egypt: Bulk rock geochemistry and mineralogy. J. Afr. Earth Sci. 2025, 225, 105567. [Google Scholar] [CrossRef]
- Sami, M.; Osman, H.; Ahmed, A.F.; Zaky, K.S.; Abart, R.; Sanislav, I.V.; Abdelrahman, K.; Fnais, M.S.; Xiao, W.; Abbas, H. Magmatic Evolution and Rare Metal Mineralization in Mount El-Sibai Peralkaline Granites, Central Eastern Desert, Egypt: Insights from Whole-Rock Geochemistry and Mineral Chemistry Data. Minerals 2023, 13, 1039. [Google Scholar] [CrossRef]
- von Knorring, O.; Fadipe, A. On the mineralogy and geochemistry of niobium and tantalum in some granite pegmatites and alkali granites of Africa. Bull. Minéralogie 1981, 104, 496–507. [Google Scholar] [CrossRef]
- Melcher, F.; Graupner, T.; Gäbler, H.E.; Sitnikova, M.; Henjes-Kunst, F.; Oberthür, T.; Gerdes, A.; Dewaele, S. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol. Rev. 2015, 64, 667–719. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Abo Khashaba, S.M.; Takazawa, E.; Hassan, S.M.; Azer, M.K.; El-Shibiny, N.; Abdelrahman, K.; Ichiyama, Y. Genesis of rare metal granites in the Nubian shield: Tectonic control and magmatic and metasomatic processes. Minerals 2024, 14, 522. [Google Scholar] [CrossRef]
- Küster, D. Granitoid-hosted Ta mineralization in the Arabian–Nubian Shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework. Ore Geol. Rev. 2009, 35, 68–86. [Google Scholar] [CrossRef]
- Sami, M.; El Monsef, M.A.; Abart, R.; Toksoy-Köksal, F.; Abdelfadil, K.M. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr–Nd Isotope Systematics, and Mineral Chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Groat, L.A.; Mulja, T.; Mauthner, M.H.; Ercit, T.S.; Raudsepp, M.; Gault, R.A.; Rollo, H.A. Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, Northwest Territories. Can. Mineral. 2003, 41, 139–160. [Google Scholar] [CrossRef]
- Alfonso, P.; Hamid, S.A.; Garcia-Valles, M.; Llorens, T.; López Moro, F.J.; Tomasa, O.; Calvo, D.; Guasch, E.; Anticoi, H.; Oliva, J.; et al. Textural and mineral-chemistry constraints on columbite-group minerals in the Penouta deposit: Evidence from magmatic and fluid-related processes. Miner. Mag. 2018, 82, S199–S222. [Google Scholar] [CrossRef]
- Fawzy, M.M.; Mahdy, N.M.; Sami, M. Mineralogical characterization and physical upgrading of radioactive and rare metal minerals from Wadi Al-Baroud granitic pegmatite at the Central Eastern Desert of Egypt. Arab. J. Geosci. 2020, 13, 413. [Google Scholar] [CrossRef]
- Mahdy, N.M. Textural and chemical characteristics of zircon, monazite, and thorite, Wadi Al-Baroud area, Eastern Desert of Egypt: Implication for rare metal pegmatite genesis. Ore Geol. Rev. 2021, 136, 104225. [Google Scholar] [CrossRef]
- Abd El Monsef, M.; Sami, M.; Toksoy-Köksal, F.; Abart, R.; Ondrejka, M.; Abdelfadil, K.M. Role of magmatism and related-exsolved fluids during Ta-Nb-Sn concentration in the Central Eastern Desert of Egypt: Evidences from mineral chemistry and fluid inclusions. J. Earth Sci. 2023, 34, 674–689. [Google Scholar] [CrossRef]
- Azer, M.K.; Surour, A.A.; Moussa, H.E.; Maurice, A.E.; Sami, M.; Abou El Maaty, M.A.; Akarish, A.I.; Heikal, M.T.S.; Elnazer, A.A.; Elsagheer, M.A. Homrit Akarem Post-Collisional Intrusion, Southeastern Desert, Egypt: Petrogenesis of Greisen Formed in a Cupola Structure and Enrichment in Strategic Minerals. Geosciences 2025, 15, 200. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Alzahrani, H.; Matta, M.J.; Azer, M.K.; Asimow, P.D.; Darwish, M.H. Petrological, geochemical and geodynamic evolution of the Wadi Al-Baroud granitoids, north Arabian-Nubian shield, Egypt. J. Afr. Earth Sci. 2023, 207, 105044. [Google Scholar] [CrossRef]
- Mohamed, F.R.; Hassan, E.E.S.; Sayed, A.O.; Ahmed, M.D. Mineralogy of polymetallic mineralized pegmatite of Ras Baroud granite, Central Eastern Desert, Egypt. J. Mineral. Petrol. Sci. 2010, 105, 123–134. [Google Scholar] [CrossRef]
- Abdelfadil, K.M.; Semary, H.E.; Asran, A.M.; Rehman, H.U.; Sami, M.; Aldukeel, A.; Mogahed, M.M. Post-Collisional Mantle Processes and Magma Evolution of the El Bola Mafic–Ultramafic Intrusion, Arabian-Nubian Shield, Egypt. Minerals 2025, 15, 705. [Google Scholar] [CrossRef]
- Abdelfadil, K.M.; Asran, A.M.; Rehman, H.U.; Sami, M.; Ahmed, A.; Sanislav, I.V.; Fnais, M.S.; Mogahed, M.M. The Evolution of Neoproterozoic Mantle Peridotites Beneath the Arabian–Nubian Shield: Evidence from Wadi Sodmein Serpentinites, Central Eastern Desert, Egypt. Minerals 2024, 14, 1157. [Google Scholar] [CrossRef]
- Sami, M.; Azer, M.; Abdel-Karim, A.A. Postcollisional Ferani Volcanics from North Arabian–Nubian Shield (South Sinai, Egypt): Petrogenesis and Implication for Ediacaran (607–593 Ma) Geodynamic Evolution. J. Geol. 2022, 130, 475–498. [Google Scholar] [CrossRef]
- El-Dokouny, H.A.; Mahdy, N.M.; El Hadek, H.H.; Sami, M.; Abart, R.; Ahmed, M.S.; Zafar, T.; Sanislav, I.V. Origin of Amphibole-Biotite-Fluorite-Rich Enclaves from Gabal El-Ineigi Fluorite-Bearing Granite, Central Eastern Desert of Egypt: Insights into Fluoride–Calcium and Silicate Liquid Immiscibility. Minerals 2023, 13, 670. [Google Scholar] [CrossRef]
- Abdel Monsif, M.; El Nahas, H.A.; Abdallah, S.M. Mineralogy and trace elements geochemistry of pegmatite body at the northern periphery of Gabal Ras Baroud, Central Eastern Desert, Egypt. Nucl. Sci. Sci. J. 2018, 7, 151–164. [Google Scholar] [CrossRef]
- Miller, C.F.; Stoddard, E.F.; Bradfish, L.J.; Dollase, W.A. Composition of Plutonic Muscovite: Genetic Implications. Can. Miner. 1981, 19, 25–34. [Google Scholar]
- Ryznar, J.; Pršek, J.; Włodek, A.; Uher, P. Mineralogy and chemistry of columbite-tantalite from Bugarura-Kuluti area, Karagwe-Ankole Belt, Rwanda: Indicators of pegmatite and granite evolution. Ore Geol. Rev. 2023, 159, 105574. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, K.; Tang, D. Types and Evolution of Columbite-Group Minerals from Pegmatites in the Chinese Altai, NW China: Implications for Regional Petrogenesis and Rare-Element Mineralization. Can. J. Mineral. Petrol. 2024, 62, 317–351. [Google Scholar] [CrossRef]
- Sallet, R.; Price, J.D.; Ribeiro, C.; Hollanda, M.H.B.; Sayeg, I.J.; Harlov, D. Fluorine behavior during experimental muscovite dehydration melting and natural partitioning between micas: Implications for the petrogenesis of peraluminous leucogranites and pegmatites. Am. Mineral. 2023, 108, 1201–1212. [Google Scholar] [CrossRef]
- Clarke, D.B. The mineralogy of peraluminous granites; a review. Can. Mineral. 1981, 19, 3–17. [Google Scholar]
- Koopmans, L.; Martins, T.; Linnen, R.; Gardiner, N.J.; Breasley, C.M.; Palin, R.M.; Groat, L.A.; Silva, D.; Robb, L.J. The formation of lithium-rich pegmatites through multi-stage melting. Geology 2023, 52, 7–11. [Google Scholar] [CrossRef]
- Dostal, J.; Gerel, O. Occurrences of niobium and tantalum mineralization in Mongolia. Minerals 2022, 12, 1529. [Google Scholar] [CrossRef]
- Breasley, C.M.; Groat, L.A.; Martins, T.; Linnen, R.L.; Larson, K.P.; Henry, R.E. Mineralogy and petrology of the petalite-subtype Prof pegmatite, Revelstoke, British Columbia, Canada. Miner. Mag. 2024, 88, 698–720. [Google Scholar] [CrossRef]
- Siachoque, A.; Garcia, R.; Vlach, S.R. Occurrence and composition of columbite-(Fe) in the reduced a-type desemborque pluton, graciosa province (s-se Brazil). Minerals 2020, 10, 411. [Google Scholar] [CrossRef]
- Sosa, G.M.; Augsburger, M.S.; Pedregosa, J.C. Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina. Eur. J. Mineral. 2002, 14, 627–636. [Google Scholar] [CrossRef]
- René, M.; Škoda, R. Nb-Ta-Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic. Mineral. Petrol. 2011, 103, 37–48. [Google Scholar] [CrossRef]
- Fuchsloch, W.C.; Nex, P.A.; Kinnaird, J.A. The geochemical evolution of Nb–Ta–Sn oxides from pegmatites of the Cape Cross–Uis pegmatite belt, Namibia. Miner. Mag. 2019, 83, 161–179. [Google Scholar] [CrossRef]
- Novák, M.; Cerny, P.; Uher, P. Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite granitic pegmatite, Maršíkov, Czech Republic. Eur. J. Mineral. 2003, 15, 565–574. [Google Scholar] [CrossRef]
- Cerny, P.; Nemec, D. Pristine Vs Contaminated Trends in Nb,Ta-Oxide Minerals of the Jihlava Pegmatite District, Czech-Republic. Mineral. Petrol. 1995, 55, 117–129. [Google Scholar] [CrossRef]
- Martins, T.N.; Lima, A.; Falster, A.U.; Simmons, W.B.; Noronha, F. Geochemical fractionation of Nb–Ta oxides in Li-bearing pegmatites from the Barroso–Alvão pegmatite field, northern Portugal. Can. Mineral. 2011, 49, 777–791. [Google Scholar] [CrossRef]
- Ercit, T.S.; Wise, M.A.; Cerny, P. Compositional and structural systematics of the columbite group. Am. Mineral. 1995, 80, 613–619. [Google Scholar] [CrossRef]
- Linnen, R.L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites. Econ. Geol. 1998, 93, 1013–1025. [Google Scholar] [CrossRef]
- Tindle, A.G.; Breaks, F.W. Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lakeh area, N.W. Ontario, Canada. Mineral. Petrol. 2000, 70, 165–198. [Google Scholar] [CrossRef]
- Mulja, T.; WilliamsJones, A.E.; Martin, R.F.; Wood, S.A. Compositional variation and structural state of columbite-tantalite in rare-element granitic pegmatites of the Preissac-Lacorne batholith, Quebec, Canada. Am. Mineral. 1996, 81, 146–157. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.; Wise, M.A. The tantalite-tapiolite gap; natural assemblages versus experimental data. Can. Mineral. 1992, 30, 587–596. [Google Scholar]
- Gramaccioli, C.M.; Diella, V.; Demartin, F. The role of fluoride complexes in REE geochemistry and the importance of 4f electrons; some examples in minerals. Eur. J. Mineral. 1999, 11, 983–992. [Google Scholar] [CrossRef]
- Zozulya, D.R.; Skublov, S.G.; Levashova, E.V.; Lyalina, L.M. Characteristics of the unique Y-HREE-F-RICH pegmatite system revealed by zircon geochemistry: A case study from Mt. Ploskaya amazonite deposit, Kola Peninsula. Mineralogy 2025, 11, 43–63. [Google Scholar]
- Galliski, M.Á.; Márquez-Zavalía, M.F.; Pagano, D.S. Metallogenesis of the Totoral LCT rare-element pegmatite district, San Luis, Argentina: A review. J. South Am. Earth Sci. 2019, 90, 423–439. [Google Scholar] [CrossRef]
- Matta, M.G.; Azer, M.K.; Darwish, M.H. Rare metals bearing pegmatites in the Nubian Shield: A case study of Ras Al-Baroud area, Eastern Desert of Egypt. New Val. Univ. J. Basic Appl. Sci. 2024, 2, 18–31. [Google Scholar] [CrossRef]
- Zozulya, D.; Macdonald, R.; Bagiński, B.; Jokubauskas, P. Nb/Ta, Zr/Hf and REE fractionation in exotic pegmatite from the Keivy province, NW Russia, with implications for rare-metal mineralization in alkali feldspar granite systems. Ore Geol. Rev. 2022, 143, 104779. [Google Scholar] [CrossRef]
- Ercit, T.S. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: A statistical approach. Can. Miner. 2005, 43, 1291–1303. [Google Scholar] [CrossRef]
- Alekseev, V.I.; Sukhanova, K.G.; Marin, Y.B. Niobium Minerals As Indicators of a Genetic Link Between Tin-Bearing Zwitter and Lithium–Fluorine Granite of the Verkhneurmiysky Massif in the Amur River Region. Geol. Ore Depos. 2018, 60, 698–707. [Google Scholar] [CrossRef]
- Szuszkiewicz, A.; Pieczka, A.; Szełęg, E.; Turniak, K.; Ilnicki, S.; Nejbert, K. The Euxenite-Group Minerals and Products of Their Alteration In The Hybrid Julianna Granitic Pegmatite, Piława GÓrna, Sudetes, Southwestern Poland. Can. Mineral. 2017, 54, 879–898. [Google Scholar] [CrossRef]
- Ewing, R.C. The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state: Discussion. Am. Mineral. J. Earth Planet. Mater. 1975, 60, 728–733. [Google Scholar]
- Gonçalves, A.O.; Melgarejo, J.C.; Alfonso, P.; Amores, S.; Paniagua, A.; Neto, A.B.; Morais, E.A.; Camprubí, A. The distribution of rare metals in the LCT pegmatites from the Giraúl Field, Angola. Minerals 2019, 9, 580. [Google Scholar] [CrossRef]
- Bartels, A.; Behrens, H.; Holtz, F.; Schmidt, B.C.; Fechtelkord, M.; Knipping, J.; Crede, L.; Baasner, A.; Pukallus, N. The effect of fluorine, boron and phosphorus on the viscosity of pegmatite forming melts. Chem. Geol. 2013, 346, 184–198. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Heinrich, C.A.; Candela, P.A. Fluids and ore formation in the Earth’s crust. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 13, pp. 1–28. [Google Scholar]
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Ahmed, A.F.; Hauzenberger, C. Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geol. Rev. 2017, 88, 1–22. [Google Scholar] [CrossRef]
- Araujo, F.P.; Hulsbosch, N.; Muchez, P. Paragenesis and precipitation stages of Nb-Ta-oxide minerals in phosphorus-rich rare-element pegmatites (Buranga dike, Rwanda). Am. Mineral. J. Earth Planet. Mater. 2023, 108, 277–296. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhang, S.B.; Zheng, Y.F.; Wu, S.T.; Li, W.C.; Sun, F.Y.; Liang, T. Mobilization and fractionation of HFSE and REE by high fluorine fluid of magmatic origin during the alteration of amphibolite. Lithos 2022, 420–421, 106701. [Google Scholar] [CrossRef]
- Kalikone, C.; Borst, A.; Nahimana, L.; Nzolang, C.; Nimpagaritse, G.; Batumike, J.; Rumanya, R.; Kezimana, L.; Delvaux, D.; Dewaele, S. Pegmatite zonation and the use of muscovite as a geochemical indicator for tin-tantalum-tungsten mineralization: Case studies from the Kalehe and Idjwi areas, Democratic Republic of Congo. J. Afr. Earth Sci. 2023, 207, 105067. [Google Scholar] [CrossRef]
- Beskin, S.; Marin, Y.B. Granite systems with rare-metal pegmatites. Geol. Ore Depos. 2020, 62, 554–563. [Google Scholar] [CrossRef]
- Černý, P.; Chapman, R.; Ferreira, K.; Smeds, S.A. Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend. Am. Mineral. 2004, 89, 505–518. [Google Scholar] [CrossRef]
- Raslan, M.; Fawzy, M.M. Mineralogy and Physical Upgrading of Fergusonite-Y and Hf-Zircon in The Mineralized Pegmatite of Abu Dob Granite, Central Eastern Desert, Egypt. Bull. Tabbin Inst. Metall. Stud. (TIMS) 2018, 107, 52–65. [Google Scholar] [CrossRef]
- Cao, L.; Chen, X.; Jiang, J.; Garba, A.A.; Li, H.; Chao, N.; Hu, P.; Lv, X. Geochronology of cassiterite in the Nassarawa-Keffi rare metal pegmatite belt, Nigeria: Tectonic linkages to the Gondwana-forming orogeny. Ore Geol. Rev. 2024, 175, 106339. [Google Scholar] [CrossRef]






| Indicator/Mechanism | Granite (Fergusonite-(Y)) | Pegmatite (Fergusonite-(Y), Euxenite-(Y)) | Interpretation |
|---|---|---|---|
| TiO2 (wt.%) | 1.4–3.6 | 2.5–4.7 (Ferg-Y); 18–21 (Eux-Y) | Ti enrichment with advanced fractionation/pegmatitic stage |
| FeO (wt.%) | 0.7–2.1 | 0.2–0.4 (Ferg-Y) | Fe depletion in late, more oxidized, volatile-rich melts |
| Ta2O5 (wt.%) | ~0.9–1.1 | 0.9–5.4 (Ferg-Y); 11.1–14.5 (Eux-Y) | Progressive Ta enrichment during fractionation |
| UO2 + ThO2 (wt.%) | ≤0.5 | up to ~8.6 UO2; 0.5–2.8 ThO2 (Eux-Y) | Late actinide uptake, metamictization tendency |
| Y/(Nb + Ta) | 0.54–0.58 | 0.49–0.54 (broader tail) | Decoupling of Y vs. REE in pegmatite |
| ΣREE (apfu, Ferg-Y) | 0.15–0.17 | 0.17–0.21 | Higher total REE in pegmatite |
| Nb/Ta (molar) | 82–101 | 14.8–89.7 | Ta-ward evolution in pegmatite |
| Y/Dy (Eux-Y) | — | ~12–23 | F-rich conditions; HREE mobility vs. Y excess |
| REE patterns | LREE-poor, moderate HREE | Strong LREE depletion; HREE-Y rich | F-complexation and late oxide saturation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sami, M.; Sanislav, I.V.; Kumar, A.A.; Abukhadra, M.R.; Kamaunji, V.D.; Alhejji, S.S. Crystal-Chemical Evolution of Muscovite and Nb–Ta–Y–REE-Bearing Minerals in the Wadi Al-Baroud Granite–Pegmatite System. Minerals 2025, 15, 1206. https://doi.org/10.3390/min15111206
Sami M, Sanislav IV, Kumar AA, Abukhadra MR, Kamaunji VD, Alhejji SS. Crystal-Chemical Evolution of Muscovite and Nb–Ta–Y–REE-Bearing Minerals in the Wadi Al-Baroud Granite–Pegmatite System. Minerals. 2025; 15(11):1206. https://doi.org/10.3390/min15111206
Chicago/Turabian StyleSami, Mabrouk, Ioan V. Sanislav, Avish A. Kumar, Mostafa R. Abukhadra, Vandi Dlama Kamaunji, and Suhail S. Alhejji. 2025. "Crystal-Chemical Evolution of Muscovite and Nb–Ta–Y–REE-Bearing Minerals in the Wadi Al-Baroud Granite–Pegmatite System" Minerals 15, no. 11: 1206. https://doi.org/10.3390/min15111206
APA StyleSami, M., Sanislav, I. V., Kumar, A. A., Abukhadra, M. R., Kamaunji, V. D., & Alhejji, S. S. (2025). Crystal-Chemical Evolution of Muscovite and Nb–Ta–Y–REE-Bearing Minerals in the Wadi Al-Baroud Granite–Pegmatite System. Minerals, 15(11), 1206. https://doi.org/10.3390/min15111206

