Grammatikopoulosite, NiVP, a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece
Abstract
1. Introduction
2. Geological Background and Occurrence of Grammatikopoulosite
3. Analytical Methods
4. Physical and Optical Properties
5. Chemical Composition and X-Ray Crystallography
6. Description of the Structure and Relations to Other Species
7. Discussion and Genetical Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaccarini, F.; Bindi, L.; Ifandi, E.; Grammatikopoulos, T.; Stanley, C.; Garuti, G.; Mauro, D. Tsikourasite, Mo3Ni2P1 + x (x < 0.25), a new phosphide from the chromitite of the othrys ophiolite, Greece. Minerals 2019, 9. [Google Scholar]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earth’s phosphides in levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G.; Kazakov, I. Platinum-group minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals, Russia. Minerals 2016, 6, 108. [Google Scholar] [CrossRef]
- Sideridis, A.; Zaccarini, F.; Grammatikopoulos, T.; Tsitsanis, P.; Tsikouras, B.; Pushkarev, E.; Garuti, G.; Hatzipanagiotou, K. First occurrences of Ni-phosphides in chromitites from the ophiolite complexes of Alapaevsk, Russia and GerakiniOrmylia, Greece. Ofioliti 2018, 43, 75–84. [Google Scholar]
- Ifandi, E.; Zaccarini, F.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Karipi, S.; Hatzipanagiotou, K. First occurrences of Ni-V-Co phosphides in chromitite of Agios Stefanos mine, Othrys ophiolite, Greece. Ofioliti 2018, 43, 131–145. [Google Scholar]
- Zaccarini, F.; Ifandi, E.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Mauro, D.; Bindi, L.; Stanley, C. Occurrences of of new phosphides and sulfide of Ni, Co, V, and Mo from chromitite of the Othrys ophiolite complex (Central Greece). Per. Ital. Mineral. 2019, 88. [Google Scholar] [CrossRef]
- Smith, A.G.; Rassios, A. The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites. Geol. Soc. Am. Spec. Pap. 2003, 373, 337–350. [Google Scholar]
- Hynes, A.J.; Nisbet, E.G.; Smith, G.A.; Welland, M.J.P.; Rex, D.C. Spreading and emplacement ages of some ophiolites in the Othris region (eastern central Greece). Z. Deutsch Geol. Ges. 1972, 123, 455–468. [Google Scholar]
- Smith, A.G.; Hynes, A.J.; Menzies, M.; Nisbet, E.G.; Price, I.; Welland, M.J.; Ferrière, J. The stratigraphy of the Othris Mountains, eastern central Greece: A deformed Mesozoic continental margin sequence. Eclogue Geol. Helv. 1975, 68, 463–481. [Google Scholar]
- Rassios, A.; Smith, A.G. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites. In Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program; Dilek, Y., Moores, E., Eds.; Geological Society of America: Boulder, CO, USA, 2001; pp. 473–484. [Google Scholar]
- Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge. Lithos 2008, 100, 234–254. [Google Scholar] [CrossRef]
- Barth, M.; Gluhak, T. Geochemistry and tectonic setting of mafic rocks from the Othris Ophiolite, Greece. Contrib. Mineral. Petrol. 2009, 157, 23–40. [Google Scholar] [CrossRef]
- Dijkstra, A.H.; Barth, M.G.; Drury, M.R.; Mason, P.R.D.; Vissers, R.L.M. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Magganas, A.; Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece. Int. J. Earth Sci. 2015, 104, 1185–1207. [Google Scholar] [CrossRef]
- Bortolotti, V.; Chiari, M.; Marcucci, M.; Photiades, A.; Principi, G.; Saccani, E. New geochemical and age data on the ophiolites from the Othrys area (Greece): Implication for the Triassic evolution of the Vardar ocean. Ofioliti 2008, 33, 135–151. [Google Scholar]
- Economou, M.; Dimou, E.; Economou, G.; Migiros, G.; Vacondios, I.; Grivas, E.; Rassios, A.; Dabitzias, S. Chromite deposits of Greece. In Chromites, UNESCO’s IGCP197 Project Metallogeny of Ophiolites; Petrascheck, W., Karamata, S., Eds.; Theophrastus Publ. S.A.: Athens, Greece, 1986; pp. 129–159. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Economou-Eliopoulos, M. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolite upper mantle of the Balkan Peninsula. Mineral. Depos. 1999, 34, 312–319. [Google Scholar] [CrossRef]
- Tsikouras, B.; Ifandi, E.; Karipi, S.; Grammatikopoulos, T.A.; Hatzipanagiotou, K. Investigation of platinum-group minerals (PGM) from Othrys chromitites (Greece) using superpanning concentrates. Minerals 2016, 6, 94. [Google Scholar] [CrossRef]
- Bruker. APEX3; Bruker AXS Inc.: Madison, WI, USA, 2016; Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/sc-xrd-software/apex3.html (accessed on 31 January 2020).
- Bruker. SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2016. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/sc-xrd-software/apex3.html (accessed on 31 January 2020).
- Britvin, S.N.; Rudashevskii, N.S.; Krivovichev, S.V.; Burns, P.C.; Polekhovsky, Y.S. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. Am. Mineral. 2002, 87, 1245–1249. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Wilson, A.J.C. International Tables for Crystallography: Mathematical, Physical, and Chemical Tables; International Union of Crystallography: Chester, UK, 1992; Volume 3. [Google Scholar]
- Ivanov, A.V.; Zolensky, M.E.; Saito, A.; Ohsumi, K.; Yang, S.V.; Kononkova, N.N.; Mikouchi, T. Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite, Locality: Kaidun chondritic meteorite, South Yemen. Am. Mineral. 2000, 85, 1082–1086. [Google Scholar] [CrossRef]
- Zolensky, M.; Gounelle, M.; Mikouchi, T.; Ohsumi, K.; Le, L.; Hagiya, K.; Tachikawa, O. Andreyivanovite: A second new phosphide from the Kaidun meteorite. Am. Mineral. 2008, 93, 1295–1299. [Google Scholar] [CrossRef][Green Version]
- Fruchart, R.; Roger, A.; Sénateur, J.P. Crystallographic and magnetic properties of solid solutions of the phosphides M2P, M = Cr, Mn, Fe, Co, and N. J. Appl. Phys. 1969, 40, 1250–1257. [Google Scholar] [CrossRef]
- Wells, A.F. Structural Inorganic Chemistry, 5th ed.; Clarendon Press: Oxford, UK, 1984; p. 1288. [Google Scholar]
- Smith, D.G.W.; Nickel, E.H. A system for codification for unnamed minerals: Report of the subcommittee for unnamed minerals of the IMA commission on new minerals, nomenclature and classification. Can. Mineral. 2007, 45, 983–1055. [Google Scholar] [CrossRef]
- Malvoisin, B.; Chopin, C.; Brunet, F.; Matthieu, E.; Galvez, M.E. Low-temperature Wollastonite formed by carbonate reduction: A marker of serpentinite redox conditions. J. Petrol. 2012, 53, 159–176. [Google Scholar] [CrossRef]
- Etiope, G.; Tsikouras, B.; Kordella, S.; Ifandi, E.; Christodoulou, D.; Papatheodorou, G. Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chem. Geol. 2013, 347, 161–174. [Google Scholar] [CrossRef]
- Etiope, G.; Ifandi, E.; Nazzari, M.; Procesi, M.; Tsikouras, B.; Ventura, G.; Steele, A.; Tardini, R.; Szatmari, P. Widespread abiotic methane in chromitites. Sci. Rep. 2018, 8, 8728. [Google Scholar] [CrossRef]
- Xiong, Q.; Griffin, W.L.; Huang, J.X.; Gain, S.E.M.; Toledo, V.; Pearson, N.J.; O’Reilly, S.Y. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from Mount Carmel. Eur. J. Mineral. 2017, 29, 557–570. [Google Scholar] [CrossRef]
- Pasek, M.A.; Hammeijer, J.P.; Buick, R.; Gull, M.; Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natural Acad. Sci. USA 2013, 110, 100089–100094. [Google Scholar] [CrossRef]
- Ballhaus, C.; Wirth, R.; Fonseca, R.O.C.; Blanchard, H.; Pröll, W.; Bragagni, A.; Nagel, T.; Schreiber, A.; Dittrich, S.; Thome, V.; et al. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem. Perspec. Lett. 2017, 5, 42–46. [Google Scholar] [CrossRef]
- Buseck, P.R. Phosphide from meteorites: Barringerite, a new iron-nickel mineral. Science 1969, 165, 169–171. [Google Scholar] [CrossRef]
- Britvin, S.N.; Kolomensky, V.D.; Boldyreva, M.M.; Bogdanova, A.N.; Krester, Y.L.; Boldyreva, O.N.; Rudashevsky, N.S. Nickelphosphide (Ni,Fe)3P—The nickel analogue of schreibersite. Zap. Vserossi. Mineral. Obschch. 1999, 128, 64–72. [Google Scholar]
- Ma, C.; Beckett, J.R.; Rossman, G.R. Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. Am. Mineral. 2014, 99, 198–205. [Google Scholar] [CrossRef]
- Pratesi, G.; Bindi, L.; Moggi-Cecchi, V. Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. Am. Mineral. 2006, 91, 451–454. [Google Scholar] [CrossRef]
- Skala, R.; Cisarova, I. Crystal structure of meteoritic schreibersites: Determination of absolute structure. Phys. Chem. Mineral. 2005, 31, 721–732. [Google Scholar] [CrossRef]







| Sample | P | S | Ni | V | Co | Mo | Fe | Si | Total |
|---|---|---|---|---|---|---|---|---|---|
| VP40-1 | 20.38 | 0.41 | 21.98 | 21.02 | 16.33 | 16.72 | 3.82 | 0.14 | 100.79 |
| VP40-2 | 19.83 | 0.42 | 21.70 | 20.48 | 16.66 | 16.36 | 3.83 | 0.14 | 99.41 |
| VP40-3 | 19.65 | 0.39 | 21.72 | 20.73 | 16.51 | 16.35 | 3.86 | 0.13 | 99.33 |
| VP40-4 | 19.65 | 0.40 | 21.95 | 21.05 | 16.37 | 16.31 | 3.85 | 0.13 | 99.71 |
| VP40-5 | 20.01 | 0.41 | 21.69 | 20.98 | 16.45 | 16.20 | 3.78 | 0.16 | 99.67 |
| average | 19.90 | 0.41 | 21.81 | 20.85 | 16.46 | 16.39 | 3.83 | 0.14 | 99.79 |
| λ nm | R1 | λ nm | R2 |
|---|---|---|---|
| 400 | 47.6 | 400 | 48.8 |
| 420 | 47.9 | 420 | 49.1 |
| 440 | 48.3 | 440 | 49.4 |
| 460 | 48.6 | 470 | 49.9 |
| 470 | 48.8 | 470 | 50.3 |
| 480 | 49.0 | 480 | 50.7 |
| 500 | 49.4 | 500 | 51.5 |
| 520 | 49.9 | 520 | 52.4 |
| 540 | 50.3 | 540 | 53.3 |
| 546 | 50.5 | 546 | 53.5 |
| 560 | 50.9 | 560 | 54.1 |
| 580 | 51.4 | 580 | 54.9 |
| 589 | 51.7 | 589 | 55.2 |
| 600 | 51.9 | 600 | 55.5 |
| 620 | 52.4 | 620 | 56.2 |
| 640 | 53.0 | 640 | 56.8 |
| 650 | 53.2 | 650 | 57.1 |
| 680 | 53.8 | 680 | 58.0 |
| 700 | 54.2 | 700 | 58.6 |
| Atom | Site Occupancy | x/a | y/b | z/c | Uiso |
|---|---|---|---|---|---|
| M1 | Ni0.57Co0.32Fe0.11 | 0.35709(6) | ¼ | 0.93703(5) | 0.00578(10) |
| M2 | V0.63Mo0.26Co0.11 | 0.47087(6) | ¼ | 0.33109(5) | 0.00595(9) |
| P | P1.00 | 0.23639(12) | ¼ | 0.62449(10) | 0.00547(13) |
| Atoms | Bond Distance |
|---|---|
| M1–P | 2.2453(8) |
| M1–P (×2) | 2.2639(5) |
| M1–P | 2.2728(8) |
| M1–M1 (×2) | 2.6000(6) |
| M1–M2 (×2) | 2.7280(5) |
| M1–M2 (×2) | 2.7487(5) |
| M1–M2 | 2.7677(5) |
| M1–M2 | 2.7696(5) |
| M2–P | 2.4299(8) |
| M2–P (×2) | 2.5008(6) |
| M2–P (×2) | 2.5811(6) |
| M2–M1 (×2) | 2.7280(5) |
| M2–M1 (×2) | 2.7487(5) |
| M2–M1 | 2.7677(5) |
| M2–M1 | 2.7696(5) |
| M2–M2 (×2) | 2.9339(6) |
| Indices | 1 | 2 | ||
|---|---|---|---|---|
| hkl | dobs | Iobs | dcalc | Icalc |
| 101 | 4.43 | 10 | 4.4559 | 14 |
| 002 | - | - | 3.4073 | 5 |
| 102 | 2.950 | 20 | 2.9493 | 19 |
| 111 | 2.785 | 25 | 2.7872 | 24 |
| 201 | 2.699 | 5 | 2.7031 | 5 |
| 112 | 2.273 | 60 | 2.2743 | 65 |
| 210 | 2.269 | 10 | 2.2722 | 8 |
| 201 | 2.230 | 10 | 2.2279 | 9 |
| 211 | 2.157 | 100 | 2.1555 | 100 |
| 103 | 2.118 | 25 | 2.1194 | 27 |
| 013 | 1.915 | 15 | 1.9168 | 14 |
| 301 | 1.888 | 10 | 1.8864 | 12 |
| 113 | 1.824 | 15 | 1.8227 | 20 |
| 020 | 1.784 | 20 | 1.7861 | 21 |
| 004 | 1.702 | 10 | 1.7036 | 10 |
| 302 | 1.700 | 15 | 1.7010 | 22 |
| 213 | 1.608 | 10 | 1.6065 | 7 |
| 114 | 1.489 | 5 | 1.4878 | 6 |
| 303 | 1.482 | 5 | 1.4853 | 6 |
| 400 | 1.470 | 5 | 1.4723 | 6 |
| 123 | 1.367 | 10 | 1.3658 | 7 |
| 322 | 1.233 | 10 | 1.2318 | 9 |
| 314 | 1.211 | 5 | 1.2106 | 6 |
| 215 | 1.170 | 10 | 1.1688 | 9 |
| 511 | 1.102 | 5 | 1.1038 | 6 |
| 513 | 1.005 | 5 | 1.0035 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bindi, L.; Zaccarini, F.; Ifandi, E.; Tsikouras, B.; Stanley, C.; Garuti, G.; Mauro, D. Grammatikopoulosite, NiVP, a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece. Minerals 2020, 10, 131. https://doi.org/10.3390/min10020131
Bindi L, Zaccarini F, Ifandi E, Tsikouras B, Stanley C, Garuti G, Mauro D. Grammatikopoulosite, NiVP, a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece. Minerals. 2020; 10(2):131. https://doi.org/10.3390/min10020131
Chicago/Turabian StyleBindi, Luca, Federica Zaccarini, Elena Ifandi, Basilios Tsikouras, Chris Stanley, Giorgio Garuti, and Daniela Mauro. 2020. "Grammatikopoulosite, NiVP, a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece" Minerals 10, no. 2: 131. https://doi.org/10.3390/min10020131
APA StyleBindi, L., Zaccarini, F., Ifandi, E., Tsikouras, B., Stanley, C., Garuti, G., & Mauro, D. (2020). Grammatikopoulosite, NiVP, a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece. Minerals, 10(2), 131. https://doi.org/10.3390/min10020131

