Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan
Abstract
:1. Introduction
2. Background of Ontake Volcano, Japan
2.1. Geological Setting
2.2. Volcanic Ash from the 2014 Hydrothermal Eruption
3. Methodology
4. Results
4.1. Mineral Identification
4.2. Petrography of Woodhouseite-APS-Bearing Volcanic Ash Grains
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mindat.org. Nickel-Strunz Classification-Primary Groups 10th Edition. 2019. Available online: https://www.mindat.org/strunz.php (accessed on 29 July 2019).
- Scott, K.M. Solid solution in, and classification of gossan-derived members of the alunite―Jarosite family, Northwest Queensland, Australia. Am. Mineral. 1987, 72, 178–187. [Google Scholar]
- Scott, K.M. The mineralogical distribution of pathfinder elements in gossans derived from dolomitic shale-hosted Pb-Zn deposits, Northwest Queensland, Australia. Chem. Geol. 1987, 64, 295–306. [Google Scholar] [CrossRef]
- Stoffregen, R.E.; Alpers, C.N. Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. Can. Mineral. 1987, 25, 201–211. [Google Scholar]
- Smith, D.K.; Roberts, A.C.; Bayliss, P.; Liebau, F. A systematic approach to general and structure-type formulas for minerals and other inorganic phases. Am Mineral. 1998, 83, 126–132. [Google Scholar] [CrossRef]
- Mills, S.J.; Hatert, F.; Nickel, E.H.; Ferraris, G. The standardisation of mineralgroup hierarchies: Application to recent nomenclature proposals. Eur. J. Miner. 2009, 21, 1073–1080. [Google Scholar] [CrossRef]
- Bayliss, P.; Kolitsch, U.; Pring, A. Alunite supergroup: Recommended nomenclature. Miner. Mag. 2010, 74, 919–927. [Google Scholar] [CrossRef]
- Dill, H.G. The geology of aluminum phosphate and sulphates of the alunite group minerals: A review. Earth-Sci. Rev. 2001, 53, 35–93. [Google Scholar] [CrossRef]
- Heald, P.; Foley, N.K.; Hyaba, D.O. Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulphate and adularia-sulfate types. Econ. Geol. 1987, 82, 11–26. [Google Scholar] [CrossRef]
- Stoffregen, R.E.; Cygan, G.L. An experimental study of Na-K exchange between alunite and aqueous sulfate solutions. Am. Mineral. 1990, 75, 209–220. [Google Scholar]
- Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D. Experimental studies of aluntie: I 18O-16O and DH fractionation factors between alunite and water at 250–450 °C. Geochim. Cosmochim. Acta 1994, 58, 903–916. [Google Scholar] [CrossRef]
- Beaufort, D.; Patrier, P.; Laverret, E.; Bruneton, P.; Mondy, J. Clay alteration associated with proterozoic unconformity-type uranium deposits in the East Alligator Rivers Uranium Field, Northern Territory, Australia. Econ. Geol. 2005, 100, 515–536. [Google Scholar] [CrossRef]
- Gaboreau, S.; Beaufort, D.; Vieillard, P.; Partrier, P. Aluminum phosphate-sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories, Australia. Can. Mineral. 2005, 43, 813–827. [Google Scholar] [CrossRef]
- Gaboreau, S.; Cuney, M.; Quirt, D.; Beaufort, D.; Patrier, P.; Mathieu, D. Significance of aluminum phosphate-sulfate minerals associated with U unconformity-type deposits: The Athabasca basin, Canada. Am. Mineral. 2007, 92, 267–280. [Google Scholar] [CrossRef]
- Aoki, M.; Comsti, E.C.; Lazo, F.B. Advanced argillic alteration and geochemistry of alunite in an evolving hydrothermal system at Baguio, Northern Luzon, Philippines. Resour. Geol. 1993, 43, 155–164. [Google Scholar]
- Arribas, A., Jr.; Cunningham, C.G.; Rytuba, J.J.; Rye, R.O.; Kelly, W.C.; Podwysocki, M.H.; McKee, E.H.; Tosdal, R.M. Geology, geochemistry, fluid inclusions and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ. Geol. 1995, 90, 795–822. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Matsuhisa, Y.; Izawa, E.; White, N.C.; Giggenbach, W.F.; Aoki, M. Geology, geochemistry, and origin of high sulphidation Cu-Au mineralization in the Nansatsu District, Japan. Econ. Geol. 1994, 89, 1–30. [Google Scholar] [CrossRef]
- Matsubara, S.; Matsuyama, F.; Kiyota, K.; Kato, A. Huangite from okumanza, gunnma prefecture, Japan. Mineral. Mag. 1998, 20, 123–135. [Google Scholar]
- Dill, H.G.; Fricke, A.; Hening, K.-H. The origin of Ba- and REE-bearing aluminium-phosphate-sulphate minerals from the Lohrheim kaolinitic clay deposit (Rheinisches Schiefergebirge, Germany). Appl. Clay. Sci. 1995, 10, 231–245. [Google Scholar] [CrossRef]
- Dill, H.G.; Bosse, H.-R.; Henning, K.-H.; Fricke, A.; Ahrend, H. Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt—The Central Andes of northwestern Peru. Miner. Depos. 1997, 32, 149–163. [Google Scholar] [CrossRef]
- Dill, H.G.; Bosse, H.-R.; Kassbohm, J. Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central American Cordillera (western El Salvador). Econ. Geol. 2000, 95, 517–538. [Google Scholar] [CrossRef]
- Ando, Y.; Tsutsumi, S. Acid alteration and geochemistry of alunite in the western Izu Peninsula, Shizuoka Prefecture. Jpn. Mag. Miner. Petrol. Sci. 2005, 34, 59–68, (In Japanese with English abstract). [Google Scholar] [Green Version]
- Hedenquist, J.W.; Arribas, A., Jr.; Aoki, M. Zonation of sulfate and sulfide minerals and isotopic composition inc the Far Southeast Porphyry and Lepanto epithermal Cu-Au deposits, Philippines. Resour. Geol. 2017, 67, 174–196. [Google Scholar] [CrossRef]
- Stoppa, F.; Scordari, F.; Mesto, E.; Sharygin, V.V.; Bortolozzi, G. Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy. Open Geosci. 2010, 2, 175–187. [Google Scholar] [CrossRef]
- Stoppa, F.; Schiazza, M. Extreme chemical conditions of crystallization of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals. Cent. Eur. J. Geosci. 2014, 6, 549–564. [Google Scholar] [CrossRef]
- Takano, B.; Watanuki, K. Monitoring of volcanic eruptions at Yugama crater lake by aqueous sulphur oxyanions. J. Volcanol. Geotherm. Res. 1990, 40, 71–87. [Google Scholar] [CrossRef]
- Tomita, K.; Kawano, M.; Kobayashi, T. Minerals in the volcanic ash erupted from Shin-dake in Kuchinoerabu Island in 1980—Report of the Faculty of Science, Kagoshima University. Earth Sci. Biol. 1994, 27, 1–10. [Google Scholar]
- Ohba, T.; Kitade, Y. Subvolcanic hydrothermal systems: Implications from hydrothermal minerals in hydrovolcanic ash. J. Volcanol. Geotherm. Res. 2005, 145, 249–262. [Google Scholar] [CrossRef]
- Minami, Y.; Imura, T.; Hayashi, S.; Ohba, T. Mineralogical study on volcanic ash of the eruption on September 27, 2014 at Ontake volcano, central Japan: Correlation with porphyry copper systems. Earth Planets Space 2016, 68, 67. [Google Scholar] [CrossRef]
- Sugimoto, T. Kashimir 3D Ver 9.2.8 23819 (9.2.8). Available online: http://www.kashmir3d.com/ (accessed on 3 July 2018).
- Earthquake Research Institute at the University of Tokyo (ERI): Eruption of the Ontakesan. 27 September 2014. Available online: http://www.eri.u-tokyo.ac.jp/en/2014/09/30/eruption-of-the-ontakesan-27th-september-2014/ (accessed on 6 July 2018).
- Yamada, N.; Kobayashi, T. Geology of the Ontakesan District. Geological Sheet Map at 1:50,000; Geological Survey of Japan: Tsukuba, Japan, 1988; (In Japanese with English abstract). [Google Scholar]
- Takeuchi, M.; Nakano, S.; Harayama, S.; Otuska, T. Geology of the Kiso-Fukushima District. With Geological Sheet Map at 1:50,000; Geological Survey of Japan: Tsukuba, Japan, 1998; (In Japanese with English abstract). [Google Scholar]
- Matsumoto, A.; Kobayashi, T. K-Ar age determination of late Quaternary volcanic rocks using the “mass fractionation correction procedure”: Application to the Younger Ontake Volcano, central Japan. Chem. Geol. 1995, 125, 123–135, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Matsumoto, A.; Kobayashi, T. K-Ar ages of the older Ontake volcanic products, Ontake volcano, central Japan: Reappraisal of the volcanic history based on the radiometric data. Bull. Volcanol. Soc. Japan 1999, 44, 1–12, (In Japanese with English abstract). [Google Scholar]
- Kioka, H.; Furuyama, K.; Miyake, Y.; Sakai, I.; Nagao, K.; Ikemoto, M.; Noiri, H.; Oda, K. K-Ar chronology of the Middle Pleistocene lavas at Ontake Volcano, central Japan. Earth. Sci. (Chikyu Kagaku) 1998, 52, 464–474. [Google Scholar]
- Oikawa, T.; Suzuki, Y.; Chiba, T. Eruptions of Ontake-san: History and 2014 eruption. Kagaku 2014, 84, 1218–1225. (In Japanese) [Google Scholar]
- Oikawa, T.; Yamaoka, K.; Yoshimoto, M.; Nakada, S.; Takeshita, Y.; Maeno, F.; Ishizuka, Y.; Komori, J.; Shimano, T.; Nakano, S. The 2014 eruption of Ontake volcano, Central Japan. Bull. Volcanol. Soc. Japan 2015, 60, 411–415, (In Japanese with English abstract). [Google Scholar]
- Japan Meteorological Agency (JMA). Ontake volcano. Bull. Volcanol. Soc. Japan 1991, 36, 385. (In Japanese) [Google Scholar]
- Nakamichi, H.; Kumagai, H.; Nakano, M.; Okubo, M.; Kimata, F.; Ito, Y.; Obara, K. Source mechanism of very-long-period event at Mt. Ontake, central Japan: Response of a hydrothermal system to magma intrusion beneath the summit. J. Volcanol. Geotherm. Res. 2009, 187, 167–177. [Google Scholar] [CrossRef]
- Oikawa, T. Reinvestigation of the historical eruption and fumarolic activity records at Ontake Volcano, central Japan—Misunderstanding reports about the 774 AD and 1892 AD eruptions. Bull. Geol. Surv. Japan 2008, 59, 203–210. [Google Scholar] [CrossRef]
- Takarada, S.; Oikawa, T.; Furukawa, R.; Hoshizumi, H.; Itoh, J.; Geshi, N.; Miyagi, I. Estimation of total discharged mass from the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014. Earth Planets Space 2016, 68, 138. [Google Scholar] [CrossRef]
- Japan Meteorological Agency (JMA)—Report of Coordinating Committee for Prediction of Volcanic Eruption. 2014. Available online: http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/kaisetsu/CCPVE/shiryo/130/130_no01.pdf (accessed on 6 July 2018). (In Japanese).
- Maeno, F.; Nakada, S.; Oikawa, T.; Yoshimoto, M.; Komori, J.; Ishizuka, Y.; Takeshita, Y.; Shimano, T.; Kaneko, T.; Nagai, M. Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, central Japan, based on proximal pyroclastic density current and fallout deposits. Earth Planets Space 2016, 68, 82. [Google Scholar] [CrossRef]
- Oikawa, T.; Yoshimoto, M.; Nakada, S.; Maeno, F.; Komori, J.; Shimano, T.; Takeshita, Y.; Ishizuka, Y.; Ishimine, Y. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews. Earth Planets Space 2016, 68, 79. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Terakawa, T.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T. Preparatory and precursory processes leadingup to the 2014 phreatic eruption of Mount Ontake, Japan. Earth Planets Space 2015, 67, 111. [Google Scholar] [CrossRef]
- Maeda, Y.; Kato, A.; Terakawa, T.; Yamanaka, Y.; Horikawa, Y.; Matsuhiro, K.; Okuda, T. Source mechanism of a VLP event immediately before the 2014 eruption of Mt. Ontake, Japan. Earth Planets Space 2015, 67, 187. [Google Scholar] [CrossRef]
- Ogiso, M.; Matsubayashi, H.; Yamamoto, T. Descent of tremor source locations before the 2014 phreatic eruption of Ontake volcano, Japan. Earth Planets Space 2015, 67, 206. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, I.; Geshi, N.; Hamasaki, S.; Tomiya, A. Volcanic ash particles from Ontake volcano on September 2014. In Emergency academic session in the Volcanological Society of Japan 2014 fall meeting, Supplement: Emergency Academic Session; Fukuoka University: Fukuoka, Japan, 2014; pp. 2–4. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Ikehata, K.; Maruoka, T. Sulfur isotopic characteristics of volcanic products from September 2014 Mount Ontake eruption, Japan. Earth Planets Space 2016, 68, 116. [Google Scholar] [CrossRef]
- Browne, P.R.L.; Lawless, J.V. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth-Sci. Rev. 2001, 52, 299–331. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Vidal, C.E.; Pinto, R.; Noble, D.C. Porphyry-epithermal transition, Cajamarca region, Northern Peru. Soc. Eco. Geo. Spc. Pub. 2004, 11, 279–299. [Google Scholar]
- Hedenquist, J.W.; Richard, W.H. Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias, and relation to previous metal mineralization. Econ. Geol. 1985, 80, 1640–1668. [Google Scholar] [CrossRef]
- Ohba, T.; Taniguchi, H.; Miyamoto, T.; Hayashi, S.; Hasenaka, T. Mud plumbing system of an isolated phreatic eruption at Akita Yakeyama volcano, northern Honshu, Japan. J. Volcanol. Geotherm. Res. 2007, 161, 35–46. [Google Scholar] [CrossRef]
- John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallence, J.W. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits. J. Volcanol. Geotherm. Res. 2007, 161, 35–46. [Google Scholar] [CrossRef]
- Browne, P.R.L. Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth. Pl. Sc. 1978, 6, 229–250. [Google Scholar] [CrossRef]
- Hayashi, M. Hydrothermal alteration in the Otake geothermal area, Kyushu. J. Jpn. Geoth. Energy Assoc. 1973, 10, 9–46, (In Japanese with English abstract). [Google Scholar]
- Arribas, A., Jr. Characteristics of high sulfidation deposits, and their relation to magmatic fluid. Mineral. Soc. Can. 1995, 23, 419–454. [Google Scholar]
- Hedenquist, J.W.; Arribas, A., Jr.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system: Far southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
APS Endmembers | Alunite Subgroup Endmembers | ||
---|---|---|---|
Svanbergite | SrAl3(PO4)(SO4)(OH)6 | Alunite | KAl3(SO4)2(OH)6 |
Woodhouseite | CaAl3(PO4)(SO4)(OH)6 | Huangite | Ca0.5Al3(SO4)2(OH)6 |
Hinsdalite | PbAl3(PO4)(SO4)(OH)6 | Natroalunite | NaAl3(SO4)2(OH)6 |
Goyazite | SrAl3(PO4)(PO3OH)(OH)6 | ||
Crandallite | CaAl3(PO4)(PO3OH)(OH)6 | ||
Gorceixide | BaAl3(PO4)(PO3OH)(OH)6 | ||
Florencite | CeAl3(PO4)2(OH)6 | ||
Alunite | KAl3(SO4)2(OH)6 | ||
Huangite | Ca0.5Al3(SO4)2(OH)6 | ||
Natroalunite | NaAl3(SO4)2(OH)6 |
Ash Grain ID | Minerals in Ash Grains a | Alteration b | APS Type c | ||||||
---|---|---|---|---|---|---|---|---|---|
Sil | Kl | Po | Alu | Wod | Py | Ti | |||
ONTK-VA-001 | + | + | + | + | + | RS | ZA | ||
ONTK-VA-002 | + | + | + | + | RS | ZA | |||
ONTK-VA-003 | + | + | AA | n.d. | |||||
ONTK-VA-004 | + | + | AA | ZA | |||||
ONTK-VA-005 | + | + | + | + | + | AA | ZA | ||
ONTK-VA-006 | + | + | + | AA-RS | n.d. | ||||
ONTK-VA-007 | + | + | + | AA-RS | n.d. | ||||
ONTK-VA-008 | + | + | + | AA-RS | ZA | ||||
ONTK-VA-009 | + | + | + | + | AA-RS | MW | |||
ONTK-VA-010 | + | + | AA | ZA | |||||
ONTK-VA-011 | + | AA | ZA | ||||||
ONTK-VA-012 | + | + | + | + | AA | ZA | |||
ONTK-VA-013 | + | + | + | AA-RS | n.d. | ||||
ONTK-VA-014 | + | + | + | + | RS | n.d. | |||
ONTK-VA-015 | + | + | + | AA | MW | ||||
ONTK-VA-016 | + | + | AA | n.d. | |||||
ONTK-VA-017 | + | + | + | + | + | AA | ZA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imura, T.; Minami, Y.; Ohba, T.; Matsumoto, A.; Arribas, A.; Nakagawa, M. Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan. Minerals 2019, 9, 462. https://doi.org/10.3390/min9080462
Imura T, Minami Y, Ohba T, Matsumoto A, Arribas A, Nakagawa M. Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan. Minerals. 2019; 9(8):462. https://doi.org/10.3390/min9080462
Chicago/Turabian StyleImura, Takumi, Yusuke Minami, Tsukasa Ohba, Akiko Matsumoto, Antonio Arribas, and Mitsuhiro Nakagawa. 2019. "Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan" Minerals 9, no. 8: 462. https://doi.org/10.3390/min9080462
APA StyleImura, T., Minami, Y., Ohba, T., Matsumoto, A., Arribas, A., & Nakagawa, M. (2019). Hydrothermal Aluminum-Phosphate-Sulfates in Ash from the 2014 Hydrothermal Eruption at Ontake Volcano, Central Honshu, Japan. Minerals, 9(8), 462. https://doi.org/10.3390/min9080462