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Abstract: Aluminum-phosphate-sulfates (APS) of the alunite supergroup occur in igneous rocks
within zones of advanced argillic and silicic alteration in porphyry and epithermal ore environments.
In this study we report on the presence of woodhouseite-rich APS in ash from the 27 September 2014
hydrothermal eruption of Ontake volcano. Scanning electron microscope coupled with energy
dispersive X-ray spectrometer (SEM-EDS) and field emission (FE)-SEM-EDS observations show two
types of occurrence of woodhouseite: (a) as cores within chemically zoned alunite-APS crystals
(Zoned-alunite-woodhouseite-APS), and (b) as a coherent single-phase mineral in micro-veinlets
intergrown with similar micro-veinlets of silica minerals (Micro-wormy-vein woodhouseite-APS).
The genetic environment of APS minerals at Ontake volcano is that of a highly acidic hydrothermal
system existing beneath the volcano summit, formed by condensation in magmatic steam and/or
ground waters of sulfur-rich magmatic volatiles exsolved from the magma chamber beneath
Mt. Ontake. Under these conditions, an advanced argillic alteration assemblage forms, which is
composed of silica, pyrophyllite, alunite and kaolinite/dickite, plus APS, among other minerals.
The discovery of woodhouseite in the volcanic ash of the Ontake 2014 hydrothermal eruption
represents the first reported presence of APS within an active volcano. Other volcanoes in Japan
and elsewhere with similar phreatic eruptions ejecting altered ash fragments will likely contain
APS minerals derived from magmatic-hydrothermal systems within the subvolcanic environment.
The presence of APS minerals within the advanced argillic zone below the summit vent of Ontake
volcano, together with the prior documentation of phyllic and potassically altered ash fragments,
provides evidence for the existence within an active volcano in Japan of an alteration column
comparable to that of porphyry copper systems globally.

Keywords: aluminum-phosphate-sulfates; alunite; subvolcanic hydrothermal system; Ontake volcano;
hydrothermal eruption; phreatic eruption

1. Introduction

Aluminum-phosphate-sulfates minerals (APS) are isostructural with the alunite-jarosite family,
within the alunite supergroup. Their chemical formula is generally expressed as AB3(XO4)2(OH)6,
where A is a large cation (Na, K, Ag, H3O, NH4, Pb, Ca, Ba, Sr, REE) in 12-fold coordination, B is occupied
by cations of the elements Al, Fe, Cu, or Zn in octahedral coordination, and X is dominated by S, P,
or As [1–5]. This supergroup includes the alunite group (sulfate), beudantite group (phosphate-sulfate),
plumbogummite group (phosphate) and dussertite group (arsenate) [2,3,6,7].
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Natural APS minerals form complex solid solutions (s.s.) consisting of various endmembers
within these groups [8] (Table 1). Chemical varieties of their s.s. compositions reflect varying Eh,
f O2, pH, and activity physicochemical conditions of crystallization within metamorphic, igneous
(both plutonic and volcanic), and sedimentary settings [8–14].

APS minerals hosted in igneous rocks typically occur as a result of secondary alteration,
whether associated with hydrothermal alteration or with supergene (weathering) in epithermal
and porphyry ore systems. Occurrences of APS have been reported in numerous previous
studies of ore deposits applying a variety of analytical methods including host-rock petrography,
fluid-inclusion geothermometry, and stable isotopic analysis. According to these studies, APS are
present in hydrothermally altered volcanic rocks that are altered to advanced argillic and silicic
alteration assemblages [15–23]. In these cases, euhedral, commonly bladed, hydrothermal alunite often
shows a core of APS with crandallite-woodhouseite-svanbergite (Table 1) compositions [15–23]. APS is
detected also along the contact between alkaline-igneous rocks and arigillitic country-rocks, coexisting
with cement phased minerals (Calcium Silicate Hydrate (CSH), Calcium Alumium Silicate Hydrate
(CASH) [24,25]). Fluid inclusion microthermometry and stable isotopic geothermometry indicate
formation temperatures between 200 ◦C and 350 ◦C [16,17,23]. Hydrogen, oxygen, and sulfur isotopic
studies from APS, and in associated sulfates and sulfides, show that the precipitation of APS is related to
mixtures of S-rich magmatic volatiles, hydrothermal fluids, and meteoric groundwaters [15–17,22,23].

Given the similarity in geologic setting, APS minerals should also occur in altered rocks associated
with active volcanoes. Samples from some active volcanoes are indeed rich in hydrothermal
alunite [26–29]. These products have been interpreted to be derived from sulfuric acid-rich subvolcanic
hydrothermal systems. APS from within an active volcano will help understand subvolcanic
hydrothermal processes, providing a mineralogical record of the pre-eruptive physicochemical
conditions within the subvolcanic hydrothermal system. However, reported occurrences of APS
in active volcanic systems have not been reported. This study aims to document the presence of APS
mineral in volcanic products from active volcanoes by examining samples of alunite-bearing altered
rock from the 2014 hydrothermal eruption of Ontake volcano in central Japan [29].

2. Background of Ontake Volcano, Japan

2.1. Geological Setting

Ontake volcano (3067 MASL), located in central Japan (Figure 1 [30,31]), is a stratovolcano
consisting of basalt, andesite, and dacite lava and pyroclastic rocks. This volcano overlies basement
rocks composed of Jurassic to Paleogene rhyolitic to rhyodacitic volcanic and marine sedimentary
rocks [32,33]. Older volcanic activity at Ontake (200–300 ka) formed an early edifice by effusion of
basaltic and andesitic lava with minor dacite [32]. The younger activity (<80 ka) that formed the
current edifice is subdivided into an early (78–39 ka) explosive stage of rhyolitic to dacitic magma and
a younger (< ~10 ka) stage of effusive andesite lava [33–36]. The summit area around Kengamine peak
(Figure 1) is composed of the young andesite lava [32].

During the Holocene, phreatic (or hydrothermal) eruptions have occurred more frequently at
Ontake volcano than magmatic eruptions. The frequency of the phreatic (or hydrothermal) eruptions
has been estimated to be ~0.6/Ky, double that of the magmatic eruptions [37,38]. Before the 2014
eruption, three phreatic (or hydrothermal) eruptions were witnessed in 1979, 1991, and 2007 [37,39,40],
suggesting a higher frequency than 0.6/Ky. Geothermal manifestations have developed on the
southwestern flank of Kengamine cone for at least the last 250 years [41]. Hydrothermally altered rocks
were exposed in the same area prior to the 2014 eruption.
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Figure 1. Sampling location of volcanic ash from the 2014 eruption. The topographical relief map is 
created with Kashimir3D [30] from the 10-m-mesh DEM data provided by the Geospatial Information 
Authority of Japan. Thickness and isomass contours of the volcanic ash from the 2014 eruption were 
referred from the results of the geological survey conducted by Earthquake Research Institute, The 
University of Tokyo (ERI) (2014) [31]. 

2.2. Volcanic Ash from the 2014 Hydrothermal Eruption 

The eruption on 27 September 2014 took place on the southwestern flank of Kengamine peak. 
This eruption ejected approximately one million tonnes of volcanic ash; an estimated volume similar 
to that of the 1979 eruption [42]. The Volcanic Explosivity Index (VEI) of the 2014 eruption was two [31,43]. 
The volcanic ash draped the surface of the summit area and the eastern flank [43–45]. Geophysical 
studies reported precursory seismicity linked to the eruption [46–48]. 

The ash of the 2014 eruption is composed of abundant altered lithic fragments and minor unaltered 
volcanic rock fragments [49]. Based on the study of individual ash particles, Minami et al. (2016) [29] 
classified the alteration into five types: silica–pyrite, silica–pyrite ± alunite ± kaolin, silica–
pyrophyllite–pyrite, silica–muscovite ± chlorite, and silica–K-feldspar ± albite ± garnet ± biotite. These 
results indicate that the ash grains were derived from an active subvolcanic magmatic-hydrothermal 
system existing under the crater and consisting of silicic, advanced argillic, phyllic, and potassic 
alteration zones. Minami et al. (2016) [29] interpreted these zones as comparable to the alteration 
zones in a porphyry copper system [50]. Another study on the volcanic products reported a sulfur 
isotopic equilibrium temperature of ca. 286 °C, based on the assumption of equilibrium between 
sulfate (gypsum and anhydrite) and pyrite [51]. These results clearly show that the 2014 eruption was 
similar to hydrothermal eruption [52] driven by a convecting hot water or steam-dominated 
hydrothermal system. In this paper we use “hydrothermal eruption [52]” to best describe the 2014 
Ontake eruption. 

3. Methodology 

For this study we used an ash sample documented in Minami et al., (2016) [29]. The sample was 
collected four days after the eruption, at a roadside point (35°54’29.00” N, 137°34’06.23” E) 8 km 
northeast from the vent (Figure 1). The sample consists mainly of fine (<250 μm) ash. A relatively 
coarse fraction (70–125 μm) obtained by sieving was prepared for a polished section using epoxy 
resin. The polished section was observed with a JEOL JSM-6610LV scanning electron microscope 
(SEM) coupled with an Oxford Instruments energy dispersive X-ray spectrometer (EDS) at Akita 
University and a JEOL JSM-7100F field emission (FE) SEM and Oxford Instruments EDS at Hokkaido 

Figure 1. Sampling location of volcanic ash from the 2014 eruption. The topographical relief map is
created with Kashimir3D [30] from the 10-m-mesh DEM data provided by the Geospatial Information
Authority of Japan. Thickness and isomass contours of the volcanic ash from the 2014 eruption
were referred from the results of the geological survey conducted by Earthquake Research Institute,
The University of Tokyo (ERI) (2014) [31].

2.2. Volcanic Ash from the 2014 Hydrothermal Eruption

The eruption on 27 September 2014 took place on the southwestern flank of Kengamine peak.
This eruption ejected approximately one million tonnes of volcanic ash; an estimated volume similar to
that of the 1979 eruption [42]. The Volcanic Explosivity Index (VEI) of the 2014 eruption was two [31,43].
The volcanic ash draped the surface of the summit area and the eastern flank [43–45]. Geophysical
studies reported precursory seismicity linked to the eruption [46–48].

The ash of the 2014 eruption is composed of abundant altered lithic fragments and minor unaltered
volcanic rock fragments [49]. Based on the study of individual ash particles, Minami et al. (2016) [29]
classified the alteration into five types: silica–pyrite, silica–pyrite±alunite±kaolin, silica–pyrophyllite–pyrite,
silica–muscovite ± chlorite, and silica–K-feldspar ± albite ± garnet ± biotite. These results indicate
that the ash grains were derived from an active subvolcanic magmatic-hydrothermal system existing
under the crater and consisting of silicic, advanced argillic, phyllic, and potassic alteration zones.
Minami et al. (2016) [29] interpreted these zones as comparable to the alteration zones in a porphyry copper
system [50]. Another study on the volcanic products reported a sulfur isotopic equilibrium temperature of
ca. 286 ◦C, based on the assumption of equilibrium between sulfate (gypsum and anhydrite) and pyrite [51].
These results clearly show that the 2014 eruption was similar to hydrothermal eruption [52] driven by
a convecting hot water or steam-dominated hydrothermal system. In this paper we use “hydrothermal
eruption [52]” to best describe the 2014 Ontake eruption.

3. Methodology

For this study we used an ash sample documented in Minami et al., (2016) [29]. The sample
was collected four days after the eruption, at a roadside point (35◦54′29.00” N, 137◦34′06.23” E) 8 km
northeast from the vent (Figure 1). The sample consists mainly of fine (<250 µm) ash. A relatively
coarse fraction (70–125 µm) obtained by sieving was prepared for a polished section using epoxy resin.
The polished section was observed with a JEOL JSM-6610LV scanning electron microscope (SEM)
coupled with an Oxford Instruments energy dispersive X-ray spectrometer (EDS) at Akita University
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and a JEOL JSM-7100F field emission (FE) SEM and Oxford Instruments EDS at Hokkaido University.
Grain morphological, textural, and petrographic observations were made using backscattered electron
images (BEI). Qualitative and semi-quantitative chemical analyses were obtained using the EDS spectra.
The analytical instrumental conditions were: 15 kV acceleration voltage, probe current of 2.2 nA
(SEM-EDS) and 0.5 nA (FE-SEM-EDS), 10 mm working distance, and a 20 s live time.

4. Results

4.1. Mineral Identification

Semi-quantitative chemical analyses by EDS were carried out to identify APS minerals. APS
minerals are defined by the stoichiometric formula (Na, K, Ag, H3O, NH4, Pb, Ca, Ba, Sr, REE) (Al,
Fe, Cu, and Zn)3 ((S, P, As) O4) (OH)6 [1–5]. Crystals with spectra consisting of O, S, P, Ca, and Al
were identified as APS minerals (Figure 2). In this paper, we use the general name of “APS” to express
the designate s.s. between endmember compositions listed in Table 1. For example, the APS crystals
consisting mainly of P, S, Ca are denoted by “woodhouseite-APS” (woodhouseite composition-rich
APS). Alunite crystals with spectra consisting of O, S, Al, Na, K, and Ca were distinguished from
APS (Figure 2; Figure 3). In many cases, these alunite crystals consist of Na-Ca-K in various proportion.
We simply express the alunite as the designate s.s. of Na, K, and Ca endmembers (Table 1). For example,
Na-K rich alunite is expressed as “Na-K-alunite”.

Table 1. Endmember compositions of aluminum-phosphate-sulfates (APS) and alunite.

APS Endmembers Alunite Subgroup Endmembers

Svanbergite SrAl3(PO4)(SO4)(OH)6 Alunite KAl3(SO4)2(OH)6
Woodhouseite CaAl3(PO4)(SO4)(OH)6 Huangite Ca0.5Al3(SO4)2(OH)6

Hinsdalite PbAl3(PO4)(SO4)(OH)6 Natroalunite NaAl3(SO4)2(OH)6
Goyazite SrAl3(PO4)(PO3OH)(OH)6

Crandallite CaAl3(PO4)(PO3OH)(OH)6
Gorceixide BaAl3(PO4)(PO3OH)(OH)6
Florencite CeAl3(PO4)2(OH)6

Alunite KAl3(SO4)2(OH)6
Huangite Ca0.5Al3(SO4)2(OH)6

Natroalunite NaAl3(SO4)2(OH)6

The selected minerals in Table 1 are referred from [4,6,7].
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Figure 3. Compositionally zoned alunite containing a core of a dissolved-fibrous APS mineral.

4.2. Petrography of Woodhouseite-APS-Bearing Volcanic Ash Grains

Woodhouseite-APS were observed in the volcanic ash grains altered to advanced argillic and
silicic assemblages, as reported by Minami et al. (2016) [29]. The mineral assemblage, alteration
type, and occurrence of the woodhouseite-APS in the ash grains studied is summarized in Table 2.
Woodhouseite-APS crystals commonly occur as cores of euhedral alunite crystals. Two crystal textures
were observed: Zoned-alunite-woodhouseite-APS and Micro-wormy-vein woodhouseite-APS. The former is
more abundant in the examined altered ash grains (Table 2).

Table 2. Summary of petrographical observation on volcanic ash grains.

Ash Grain ID
Minerals in Ash Grains a

Alteration b APS Type c

Sil Kl Po Alu Wod Py Ti

ONTK-VA-001 + + + + + RS ZA
ONTK-VA-002 + + + + RS ZA
ONTK-VA-003 + + AA n.d.
ONTK-VA-004 + + AA ZA
ONTK-VA-005 + + + + + AA ZA
ONTK-VA-006 + + + AA-RS n.d.
ONTK-VA-007 + + + AA-RS n.d.
ONTK-VA-008 + + + AA-RS ZA
ONTK-VA-009 + + + + AA-RS MW
ONTK-VA-010 + + AA ZA
ONTK-VA-011 + AA ZA
ONTK-VA-012 + + + + AA ZA
ONTK-VA-013 + + + AA-RS n.d.
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Table 2. Cont.

Ash Grain ID
Minerals in Ash Grains a

Alteration b APS Type c

Sil Kl Po Alu Wod Py Ti

ONTK-VA-014 + + + + RS n.d.
ONTK-VA-015 + + + AA MW
ONTK-VA-016 + + AA n.d.
ONTK-VA-017 + + + + + AA ZA

Presence of the minerals in volcanic ash grains are shown by “+” present, and blank. a Mineral names are abbreviated
as: Sil: silica mineral, Kl: 7-Å kaolin-group mineral, Po: pyrophyllite, Alu: alunite, Wod: woodhouseite-APS,
Py: pyrite, and Ti: titanium oxide; b RS: residual silicified alteration; AA: advanced argillic alteration; c ZA:
Zoned-alunite-woodhouseite-APS; MW: Micro-wormy-vein woodhouseite-APS.

Zoned-alunite-woodhouseite-APS: This type of occurrence is characterized by compositionally zoned
alunite crystals. On BEI, the crystal consists of a bright core and a dark rim. As shown in Figure 4
(the EDS elemental intensity profile corresponds to the scan line in the BEI image), the X-ray counts
per second (cps) for Ca and P Kα1 peaks are high in the core and low in the rim, whereas those for S,
Na, and K show an inverse relationship. This profile indicates that the woodhouseite-APS component
(Ca-P and low S) is more abundant in the core than in the rim, which has an alunite composition.
Most alunite rims were found to have chemical compositions close to Na-K-alunite.Minerals 2019, 9, x FOR PEER REVIEW 7 of 15 
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Figure 4. EDS line scan profile with the backscattered electron images (BEI) image of the woodhouseite-
bearing alunite crystal. The compositionally zoned crystal is contained in the grain of ONTK-VA-012
in Table 2 and Figure 5b.

Zoned-alunite-woodhouseite-APS appears in a variety of occurrences within ash grains classified as
advanced argillically- or residual/vuggy silica-altered, according to Minami et al. (2016) [29]. In one
type of occurrence, individual Zoned-alunite-woodhouseite-APS crystals typically range between 10 and
50 micrometers in size (Figure 5a,b, Table 2). Within these Zoned-alunite-woodhouseite-APS crystals,
an internally homogenous core of woodhouseite-APS, which often shows a texture suggesting partial
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dissolution, is surrounded by concentric polygons of woodhouseite-APS and, further out, by euhedral
alunite (Figure 5b). A fine mixture of silica mineral(s) and pyrophyllite fill the interstitial spaces.

Zoned-alunite-woodhouseite-APS is also observed in irregular aggregates of coarse alunite crystals
(Figure 5c,d). In this case, woodhouseite-APS occur as what appear to be partially dissolved, often fibrous,
clusters within the surrounding alunite, which is typically concentrically zoned. Within the alunite
surrounding the woodhouseite-APS, the inner rims have a chemical composition closer to K-alunite and the
outer rims are closer to Na-Ca-alunite.

Another type of occurrence of Zoned-alunite-woodhouseite-APS is shown in Figure 5e,f. The ash grain
comprises a massive silicified part and irregular or vein-like open spaces or vugs, which are partially filled
with an aggregate of Zoned-alunite-woodhouseite-APS. Similar to those described previously, the alunite
crystals contain woodhouseite cores. The crystals are smaller (submicron to ca. 10 µm) than the other two
types (Figure 5f).
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single-phase in microveinlets reminiscent of the wormy texture used to describe intergrowths 
between quartz and advanced argillic alteration minerals, such as pyrophyllite, dickite or alunite, in 
porphyry copper systems of the Cajamarca region of northern Peru [53]. At Ontake a similar texture 
is observed in mineral mixtures of silica and woodhousite-APS or kaolinite/dickite (Figure 6a,b). The 

Figure 5. Representative backscattered electron images of Zoned-alunite-woodhouseite-APS. Each of (a),
(c), and (e) shows the entire view of the ash grain, corresponding respectively to the magnified images of
(b), (d), and (f). The mineral abbreviations are the same as in Table 1. (a) An aggregate of zoned-alunite
crystals in the matrix of silica-pyrophyllite mixture (ONTK-VA-017 in Table 2). (b) A fine-grained
silica-pyrophyllite mixture interstitially fills among the zoned alunite crystals with a woodhouseite core.
(c) An aggregate of coarse zoned alunite crystals. (d) Zoned alunite containing a fibrous-woodhouseite
core (ONTK-VA-004 in Table 2). The interstitial silica and Si-Al clay minerals are not accompanied with
the zoned alunite. (e) Zoned alunite filling the vugs in a massive silicified rock fragment. Irregular or
vein-shaped vugs are incompletely filled with tiny zoned alunite crystals (ONTK-VA-001 in Table 2).
(f) An aggregate of tiny crystals of zoned alunite in the vugs.
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Micro-wormy-vein woodhouseite-APS: In this type of occurrence, the APS mineral forms a coherent
single-phase in microveinlets reminiscent of the wormy texture used to describe intergrowths between
quartz and advanced argillic alteration minerals, such as pyrophyllite, dickite or alunite, in porphyry
copper systems of the Cajamarca region of northern Peru [53]. At Ontake a similar texture is observed
in mineral mixtures of silica and woodhousite-APS or kaolinite/dickite (Figure 6a,b). The typical size
of the wormy-veins is less than 10 µm in width (Figure 6b). The micro wormy-vein woodhousite-APS
texture occurs as an intricate network of silica and woodhouseite-APS with silica occasionally
crosscutting the woodhousite-APS.
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Figure 6. Representative backscattered electron images of Micro-wormy-vein woodhouseite-APS. (a): entire
ash grain containing micro-wormy veins. The grain consists mainly of silica (Sil) and kaolin (Kl)
minerals (ONTK-VA-015 in Table 2) (b) Micro-wormy vein APS cross-cut by siliceous micro-wormy
veins in the matrix of fine-grained silica-kaolin mixtures.

5. Discussion

Phreatic (or hydrothermal) and phreatomagmatic (or magmatic-hydrothermal) eruptions [52]
frequently bring to the surface altered lithic fragments from sub-volcanic hydrothermal systems [28,54–56].
The woodhouseite-APS-bearing ash erupted from the September 2014 hydrothermal eruption of Ontake
volcano is derived from pre-existing altered rocks under the Kengamine summit crater (Figure 7).
They formed in the sub-volcanic environment within an active magmatic-hydrothermal system. The ash
grains containing APS minerals consist mainly of hydrothermal minerals including silica, pyrophyllite,
kaolinite/dickite, and alunite. The stability temperature conditions of the mineral assemblages in that style
of hydrothermal environment ranges between ~150 and 350 ◦C under highly acidic conditions [57,58].
This temperaturerange isconsistentwith the temperatureof286 ◦Cdeterminedbysulfur isotopic fractionation
between sulfate and sulfide minerals in volcanic products also from the Ontake 2014 eruption [51].
These genetic conditions indicate a magmatic volatile-rich hydrothermal environment, which is directly
comparable with that observed in the early alteration stage of high-sulfidation epithermal ore Au-Cu-Ag-As
deposits [59] and the advanced argillic alteration lithocaps above porphyry copper deposits [23,50,60].
They confirm the genetic association proposed among porphyry coppers, some epithermal deposits,
and hydrothermal systems within the core of active volcanoes in magmatic arcs [61].

The occurrences described here of both Zoned-alunite-woodhouseite-APS and Micro-wormy-vein
woodhouseite-APS are similar to hydrothermal APS and alunite from epithermal-porphyry ore
systems [17,18,22]. For example, both at the Rodalquilar gold-alunite epithermal deposit in Spain [16]
and the worldclass Far Southeast (FSE) porphyry Cu-Au-Ag deposit in the Philippines [23],
euhedral-bladed hydrothermal alunite contains identical cores of APS minerals (Figure 8). Similarly,
hydrothermal APS has also been observed as a monomineralic vein [15] comparable to the Micro-wormy
vein woodhouseite-APS at Ontake volcano. Although those two types found by this study show different
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textures, both types formed under similar genetic conditions within subvolcanic advanced argillic and
silicic alteration zones [29].Minerals 2019, 9, x FOR PEER REVIEW 10 of 15 
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Figure 7. APS existence zone in the material source model (alteration column) of the volcanic ash
from the 2014 Ontake eruption. This figure was created and modified from [29,50]. The APS existence
zone surrounded by the dashed red line was based on petrography and mineralogy of the individual
volcanic ash (Figure 5; Figure 6). The black dotted area is whole material source of the volcanic ash
(maximum depth ~2 km) estimated by Minami et al. 2016 [29].
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Figure 8. (a) Backscattered electron image of bladed-alunite crystals containing dissolved cores of
woodhouseite-crandallite-svanbergite accompanying massive quartz within a fine-grained matrix of
kaolinite-pyrophyllite (Rodalquilar gold-alunite ore deposit, Spain) [16]. (b) Backscattered electron
image of alunite and APS minerals from the advanced argillic zone immediately above the FSE
porphyry Cu-Au-Ag deposit, Philippines [23]. These photographs are modified and referred from [16]
and [23], respectively.

6. Conclusions

The petrographical and mineralogical study of ash grains from the 2014 Ontake volcano
hydrothermal eruption resulted in identification of APS minerals such as woodhouseite. Two types of
woodhouseite were observed: Zoned-alunite-woodhouseite-APS and Micro-wormy-vein woodhouseite-APS.
The genetic environment of APS minerals is proposed to be highly acidic hydrothermal fluids existing
beneath the volcanic summit, formed by condensation with magmatic and/or ground waters of
magmatic volatiles exsolved from the magma chamber underneath Ontake volcano. Under these
conditions, an advanced argillic alteration assemblage formed consisting of silica, pyrophyllite, alunite,
and kaolinite/dickite, plus APS, among other minerals. The 2014 hydrothermal eruption served to
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bring to the surface samples of this advanced argillic zone as well as deeper, higher temperature
alteration zones [29]. The presence of APS minerals within the advanced argillic zone below the
summit vent of Ontake volcano, together with the description of phyllic and potassically altered ash
fragments, provides first time evidence for the existence in Japan of an alteration column identical to
that of porphyry copper systems globally.

The discovery of woodhouseite in the volcanic ash of the Ontake 2014 hydrothermal eruption
represents the first reported presence of APS within an active volcano. As shown in previous
studies [26–29] other volcanoes with phreatic (or hydrothermal) eruptions similar to that of Ontake
in September 2014 eject altered volcanic products rich in hydrothermal alunite and associated alteration
minerals. We believe that further detailed studies will prove that the presence of APS at Ontake is not
an exception, but likely commonplace among such active volcanoes.
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