Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sampling Procedure
3.2. Sample Preparation and Analytical Procedure
4. Results
4.1. Petrography
4.2. Trace Element Data
4.3. Sm-Nd Isotope Data
5. Discussion
5.1. Eudialyte Alteration and Mobilisation of HFSE
5.2. Nature of the Altering Fluids
5.3. Nd Isotopes: Evidence for Closed-System Fractionation
5.4. Implications for Resource Potential
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Full Sample Descriptions
Appendix A.1. 109202 (Catapleiite-Type)
Appendix A.2. 540286 (Catapleiite-Type)
Appendix A.3. 540269 (Catapleiite-Type)
Appendix A.4. 109211 (Gittinsite-Type)
Appendix A.5. EJH/12/091 (Zircon-Type)
References
- USGS. Rare Earths: Mineral Commodity Summaries 2018; Technical Report; United States Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Hatch, G.P. Dynamics in the Global Market for Rare Earths. Elements 2012, 8, 341–346. [Google Scholar] [CrossRef]
- Barakos, G.; Gutzmer, J.; Mischo, H. Strategic evaluations and mining process optimization towards a strong global REE supply chain. J. Sustain. Min. 2016, 15, 26–35. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Zepf, V. The Way to the Chinese Predominance: A Key for Understanding the REE Issue. In Rare Earth Elements; Springer: Berlin/Heidelberg, Germany, 2011; Chapter 3; pp. 41–49. [Google Scholar]
- Brumme, A. Wind Energy Deployment and the Relevance of Rare Earths. In Wind Energy Deployment and the Relevance of Rare Earths; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; Chapter 3; pp. 17–48. [Google Scholar]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef]
- Van Gosen, B.S.; Verplanck, P.L.; Seal, R.R., II; Long, K.R.; Gambogi, J. Rare-Earth Elements, Chap. O of Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. In U.S. Geological Survey Professional Paper 1802; Schulz, K.J., DeYoung, J.H., Seal, R.R., II, Bradley, D.C., Eds.; USGS: Reston, VA, USA, 2017; Chapter O; pp. 1–31. [Google Scholar] [CrossRef]
- Adamas Intelligence. Rare Earth Market Outlook: Supply, Demand, and Pricing from 2016 through 2025: Executive Summary; Technical Report; Adamas Intelligence: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sørensen, H. Agpaitic nepheline syenites: A potential source of rare elements. Appl. Geochem. 1992, 7, 417–427. [Google Scholar] [CrossRef]
- Bailey, J.; Gwozdz, R.; Rose-Hansen, J. Geochemical overview of the IIímaussaq alkaline complex, South Greenland. Geol. Greenl. Surv. Bull. 2001, 190, 35–53. [Google Scholar]
- TANBREEZ. Tanbreez Ltd., Company Website. Available online: http://tanbreez.com/ (accessed on 30 May 2019).
- Bohse, H.; Brooks, C.; Kunzendorf, H. Field Observations on the Kakortokites of the Ilímaussaq Intrusion, South Greenland, Including Mapping and Analyses by Portable X-ray Fluorescence Equipment for Zirconium and Niobium; Technical Report; University of Copenhagen: Copenhagen, Denmark, 1971. [Google Scholar]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; et al. Igneous Rocks: A Classification and Glossary of Terms; Cambridge University Press: Cambridge, UK, 2003; p. 252. [Google Scholar]
- Johnsen, O.; Ferraris, G.; Gault, R.A.; Grice, J.D.; Kampf, A.R.; Pekov, I.V. The nomenclature of eudialyte-group minerals. Can. Mineral. 2003, 41, 785–794. [Google Scholar] [CrossRef]
- Borst, A.; Friis, H.; Nielsen, T.F.D.; Waight, T.E. Bulk and mush melt evolution in agpaitic intrusions: Insights from compositional zoning in eudialyte, Ilímaussaq complex, South Greenland. J. Petrol. 2018, 59, 589–612. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Schilling, J.; Wu, F.; McCammon, C.; Wenzel, T.; Marks, M.A.; Pfaff, K.; Jacob, D.E.; Markl, G. The compositional variability of eudialyte-group minerals. Mineral. Mag. 2011, 75, 87–115. [Google Scholar] [CrossRef]
- Stark, T.; Silin, I.; Wotruba, H. Mineral Processing of Eudialyte Ore from Norra Kärr. J. Sustain. Metall. 2017, 3, 32–38. [Google Scholar] [CrossRef]
- Davris, P.; Stopic, S.; Balomenos, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Miner. Eng. 2017, 108, 115–122. [Google Scholar] [CrossRef]
- Voßenkaul, D.; Birich, A.; Müller, N.; Stoltz, N.; Friedrich, B. Hydrometallurgical Processing of Eudialyte Bearing Concentrates to Recover Rare Earth Elements Via Low-Temperature Dry Digestion to Prevent the Silica Gel Formation. J. Sustain. Metall. 2017, 3, 79–89. [Google Scholar] [CrossRef]
- Coulson, I.M. Post-magmatic alteration in eudialyte from the North Qôroq centre, South Greenland. Mineral. Mag. 1997, 61, 99–109. [Google Scholar] [CrossRef][Green Version]
- Mitchell, R.H.; Liferovich, R.P. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos 2006, 91, 352–372. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Chakrabarty, A. Paragenesis and decomposition assemblage of a Mn-rich eudialyte from the Sushina peralkaline nepheline syenite gneiss, Paschim Banga, India. Lithos 2012, 152, 218–226. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D. Crystallization and destabilization of eudialyte-group minerals in peralkaline granite and pegmatite: A case study from the Ambohimirahavavy complex, Madagascar. Mineral. Mag. 2018, 82, 375–399. [Google Scholar] [CrossRef]
- Möller, V.; Williams-Jones, A. Magmatic and hydrothermal controls on the mineralogy of the basal zone, Nechalacho REE-Nb-Zr deposit, Canada. Econ. Geol. 2017, 112, 1823–1856. [Google Scholar] [CrossRef]
- Borst, A.; Friis, H.; Andersen, T.; Nielsen, T.F.D.; Waight, T.E.; Smit, M.A. Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineral. Mag. 2016, 80, 5–30. [Google Scholar] [CrossRef]
- Marks, M.A.; Markl, G. A global review on agpaitic rocks. Earth Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Karup-Møller, S.; Rose-Hansen, J.; Sørensen, H. Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Bull. Geol. Soc. Den. 2010, 58, 75–88. [Google Scholar]
- Karup-Møller, S.; Rose-Hansen, J. New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilímaussaq complex, South Greenland. Bull. Geol. Soc. Den. 2013, 61, 47–70. [Google Scholar]
- Ussing, N. Geology of the Country Around Julianehaab, Greenland; Bianco Luno: Copenhagen, Denmark, 1911; p. 376, Number 1. [Google Scholar]
- Hunt, E.J. Magma Chamber Dynamics in the Peralkaline Magmas of the Kakortokite Series, South Greenland. Ph.D. Thesis, University of St Andrews, St Andrews, UK, 2015. [Google Scholar]
- Krumrei, T.V.; Villa, I.M.; Marks, M.A.; Markl, G. A 40Ar/39Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: Implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex. Chem. Geol. 2006, 227, 258–273. [Google Scholar] [CrossRef]
- Upton, B. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geol. Surv. Den. Greenl. Bull. 2013, 2013, 1–128. [Google Scholar] [CrossRef]
- Upton, B.; Emeleus, C.H.; Heaman, L.M.; Goodenough, K.; Finch, A.A. Magmatism of the mid-Proterozoic Gardar Province, South Greenland: Chronology, petrogenesis and geological setting. Lithos 2003, 68, 43–65. [Google Scholar] [CrossRef]
- Konnerup-Madsen, J.; Rose-Hansen, J. Composition and significance of fluid inclusions in the Ilímaussaq peralkaline granite, South Greenland. Bull. De Minéralogie 1984, 107, 317–326. [Google Scholar] [CrossRef]
- Larsen, L.M.; Sorensen, H. The Ilímaussaq intrusion-progressive crystallization and formation of layering in an agpaitic magma. Geol. Soc. Lond. Spec. Publ. 1987, 30, 473–488. [Google Scholar] [CrossRef]
- Garde, A.A.; Hamilton, M.A.; Chadwick, B.; Grocott, J.; McCaffrey, K.J. The Ketilidian orogen of South Greenland: Geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Can. J. Earth Sci. 2002, 39, 765–793. [Google Scholar] [CrossRef]
- Sørensen, H.; Bohse, H.; Bailey, J. The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos 2006, 91, 286–300. [Google Scholar] [CrossRef]
- Marks, M.A. Layered intrusions. In Layered Intrusions; Charlier, B., Namur, O., Rais, L., Tegner, C., Eds.; Springer: Berlin, Germany, 2015; Chapter 14; pp. 649–691. [Google Scholar]
- Ratschbacher, B.C.; Marks, M.A.; Bons, P.D.; Wenzel, T.; Markl, G. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland. Lithos 2015, 231, 62–76. [Google Scholar] [CrossRef]
- Borst, A.; Waight, T.E.; Finch, A.A.; Storey, M.; Roux, P.J. Dating agpaitic rocks: A multi-system (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) isotopic study of layered nepheline syenites from the Ilímaussaq complex, Greenland. Lithos 2019, 324–325, 74–88. [Google Scholar] [CrossRef]
- Charlier, B.; Ginibre, C.; Morgan, D.; Nowell, G.M.; Pearson, D.G.; Davidson, J.P.; Ottley, C.J. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chem. Geol. 2006, 232, 114–133. [Google Scholar] [CrossRef]
- Vilalva, F.C.; Vlach, S.R.; Simonetti, A. Nacareniobsite-(Ce) and britholite-(Ce) in peralkaline granites from the Morro Redondo Complex, Graciosa Province, Southern Brazil: Occurrence and compositional data. Can. Mineral. 2013, 51, 313–332. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Mitchell, R.H.; Ren, M.; Sen, A.K.; Pruseth, K.L. Rinkite, cerianite-(Ce), and hingganite-(Ce) in syenite gneisses from the Sushina Hill Complex, India: Occurrence, compositional data and petrogenetic significance. Mineral. Mag. 2013, 77, 3137–3153. [Google Scholar] [CrossRef]
- Pekov, I.V.; Ekimenkova, I.A. Two new rare-earth-rich mineral associations in the Ilímaussaq alkaline complex, South Greenland. Geol. Greenl. Surv. Bull. 2001, 190, 143–144. [Google Scholar]
- Frei, D.; Liebscher, A.; Franz, G.; Berlin, D.; Dulski, P. Trace Element Geochemistry. Rev. Mineral. Geochem. 2004, 56, 553–605. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pfaff, K.; Krumrei, T.V.; Marks, M.A.; Wenzel, T.; Rudolf, T.; Markl, G. Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 2008, 106, 280–296. [Google Scholar] [CrossRef]
- Marks, M.A.; Vennemann, T.; Siebel, W.; Markl, G. Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilímaussaq intrusion, south Greenland. Geochim. Cosmochim. Acta 2004, 68, 3379–3395. [Google Scholar] [CrossRef]
- Lugmair, G.W. Sm-Nd ages: A new dating method. Meteoritics 1974, 9, 369. [Google Scholar]
- Goldstein, S.; O’Nions, S.; Hamilton, P. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 1984, 70, 221–236. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G.J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Friis, H. Primary and secondary mineralogy of the Ilímaussaq alkaline complex, South Greenland. In Proceedings of the Symposium on Strategic and Critical Materials Proceedings, Victoria, BC, Canada, 13–14 November 2015; Simandl, G., Neetz, M., Eds.; British Columbia Ministry of Energy and Mines: Victoria, BC, Canada, 2015; Volume 3, pp. 83–89. [Google Scholar]
- Salvi, S.; Fontan, F.; Monchoux, P.; Williams-Jones, A.; Moine, B. Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Econ. Geol. 2000, 95, 559–579. [Google Scholar] [CrossRef]
- Paslick, C.R.; Halliday, A.N.; Davies, G.R.; Mezger, K.; Upton, B. Timing of Proterozoic magmatism in the Gardar Province, southern Greenland. Geol. Soc. Am. Bull. 1993, 105, 272–278. [Google Scholar] [CrossRef]
- Marks, M.A.; Markl, G. Ilímaussaq ”en miniature”: Closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilímaussaq no.117). Mineral. Mag. 2003, 67, 893–919. [Google Scholar] [CrossRef]
- Chao, E.C.; Back, J.M.; Minkin, J.A.; Yinchen, R. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C. Appl. Geochem. 1992, 7, 443–458. [Google Scholar] [CrossRef]
- Boily, M.; Williams-Jones, A. The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Québec-Labrador. Contrib. Mineral. Petrol. 1994, 118, 33–47. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim. Cosmochim. Acta 1996, 60, 1917–1932. [Google Scholar] [CrossRef]
- Kynicky, J.; Chakhmouradian, A.R.; Xu, C.; Krmicek, L.; Galiova, M. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. Can. Mineral. 2011, 49, 947–965. [Google Scholar] [CrossRef]
- Sheard, E.R.; Williams-Jones, A.; Heiligmann, M.; Pederson, C.; Trueman, D.L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Gysi, A.P.; Williams-Jones, A. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochim. Cosmochim. Acta 2013, 122, 324–352. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D.; Williams-Jones, A. The origin of skarn-hosted rare-metal mineralization in the Ambohimirahavavy alkaline complex, Madagascar. Econ. Geol. 2015, 110, 1485–1513. [Google Scholar] [CrossRef]
- Hutchison, W.; Babiel, R.; Finch, A.; Marks, M.; Markl, G.; Boyce, A.; Stueeken, E.; Friis, H.; Borst, A.; Horsburgh, N. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth. Nat. Commun. 2019. under review. [Google Scholar]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.; Wagner, T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim. Cosmochim. Acta 2009, 73, 7087–7109. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Depos. 2014, 49, 987–997. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.; Brugger, J.; Caporuscio, F.A. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chem. Geol. 2016, 439, 13–42. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.; van Hinsberg, V.; Salvi, S. An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochim. Cosmochim. Acta 2011, 75, 7426–7434. [Google Scholar] [CrossRef]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim. Cosmochim. Acta 2017, 197, 294–304. [Google Scholar] [CrossRef]
- Markl, G.; Baumgartner, L. pH changes in peralkaline late-magmatic fluids. Contrib. Mineral. Petrol. 2002, 144, 331–346. [Google Scholar] [CrossRef]
- Stevenson, R.; Upton, B.; Steenfelt, A. Crust-mantle interaction in the evolution of the Ilímaussaq Complex, South Greenland: Nd isotopic studies. Lithos 1997, 40, 189–202. [Google Scholar] [CrossRef]
- Goodenough, K.; Upton, B.; Ellam, R. Long-term memory of subduction processes in the lithospheric mantle: Evidence from the geochemistry of basic dykes in the Gardar Province of South Greenland. J. Geol. Soc. 2002, 159, 705–714. [Google Scholar] [CrossRef]
- Halama, R.; Wenzel, T.; Upton, B.; Siebel, W.; Markl, G. A geochemical and Sr-Nd-O isotopic study of the Proterozoic Eriksfjord Basalts, Gardar Province, South Greenland: Reconstruction of an OIB signature in crustally contaminated rift-related basalts. Mineral. Mag. 2003, 67, 831–853. [Google Scholar] [CrossRef]
- Barnes, G.; (Tanbreez Ltd.). Personal Communication, 2018.
Mineral | Formula | Catapleiite Type 1–4 | Zircon Type 1–3 | Gittinsite Type 4 |
---|---|---|---|---|
Catapleiite | (Na,Ca)2ZrSi3O9·2H2O | x | x | x |
Zircon | ZrSiO4 | x | ||
Gittinsite | CaZrSi2O7 | x | ||
Sr-Eudialyte | (Na,Sr)15Ca6(Fe,Mn)3Zr3(Si,Nb)2 | x | ||
Si24O72(O,OH,H2O)3(Cl,OH)2 | ||||
Aegirine | NaFe(Si2O6) | x | x | x |
Alkali feldspar | (Na,K)AlSi3O8 | x | x | |
Analcime | NaAlSi2O6·H2O | x | x | x |
Pectolite | NaCa2Si3O8(OH) | x | x | x |
Annite | KFe3(AlSi3O10)(OH)2 | x | ||
Fluorite | CaF2 | x | x | x |
Nacareniobsite-(Ce) | Na3Ca3(REE)Nb(Si2O7)2OF3 | x | x | x |
Allanite-(Ce) | (CaCe)(Al2Fe)Si2O7(SiO4)OOH | x | x | |
A1-type | (Ca,Ba,Ce)5(SiO4,PO4)3(OH,F) | x | x | x |
Ca-REE-P-silicates 1,2 | ||||
Apatite | Ca4.5REE0.5(PO4)3(F,Cl,OH) | x | x | |
Monazite-(Ce) | (Ce,La,Nd,Th)PO4 | x | x | |
Fergusonite-(Y) | YNbO4 | x | x |
Sample Code | Stratigraphic Level | Alteration Type | Eud (%) | Pmo (%) | Fsp (%) | Nph (%) | Arf (%) | Sod (%) | Anl (%) | Aeg (%) |
---|---|---|---|---|---|---|---|---|---|---|
Kakortokite | ||||||||||
109202 | 0R | catapleiite | 40 | 30 | 10 | 10 | 5 | 5 | ||
109211 | 3B | gittinsite | 2 | 8 | 20 | 20 | 40 | 10 | ||
540286 | 13R | catapleiite | 5 | 25 | 30 | 15 | 25 | |||
540269 | TLK-A | catapleiite | 10 | 30 | 10 | 15 | 10 | 5 | 20 | |
EJH/12/091 | Hybrid | zircon | - | 10 | 60 | 10 | 20 | |||
REE-minerals | ||||||||||
AF/16/28 | Roof zone, near Mt Illimaassaq | Epidote | ||||||||
AF/16/20 | Black lujavrite | Vitusite-(Ce) | ||||||||
520713 | Marginal Pegmatite Kringlerne | Rinkite-(Ce) | ||||||||
NJH/16/11 | Kvanefjeld | Nacareniobsite-(Ce) |
ID | 540286 | 2RSD | 540286 | 2RSD | 540269 | 2RSD | 540269 | 2RSD | 109202 | 2RSD | 109202 | 2RSD | EJH/12/091 | 2RSD | 109211 | 2RSD | 109211 | 2RSD | AF/16/28 | 2RSD | AF/16/20 | 2RSD | 520713 | 2RSD | NJH/16/11 | 2RSD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer | +13 Red | +13 Red | TLK-A Red | TLK-A Red | 0 Red | 0 Red | Hybrid | +3 Black | +3 Black | Roof Zone | Black Lujavrite | Marg. Pegmatite | Kvanefjeldt Dumps | |||||||||||||
Mineral | Eudialyte | Pseudomorph (cp) | Eudialyte | Pseudomorph (cp) | Eudialyte | Pseudomorph (cp) | Pseudomorph (zr) | Eudialyte | Pseudomorph (gt) | Epidote | Vitusite-(Ce) | Rinkite-(Ce) | Nacareniobsite-(Ce) | |||||||||||||
Li | 6 | 0.1 | 54 | 0.02 | 22 | 0.04 | 40 | 0.03 | 18 | 0.08 | 20 | 0.05 | 6 | 0.1 | 41 | 0 | 128 | 0 | 1 | 0.02 | 602 | 0.06 | 180 | 0.05 | 165 | 0.25 |
Be | 3 | 0.21 | 53 | 0.01 | - | 20 | 0.12 | 13 | 0.14 | 32 | 0.12 | 36 | 0.2 | 9 | 0.27 | - | 2 | 0.19 | 386 | 0.11 | n.d. | 40 | 0.19 | |||
Ti | 837 | 0.12 | 776 | 0.04 | 608 | 0.05 | 457 | 0.19 | - | 761 | 0.06 | - | 589 | 0.02 | - | 286 | 0.11 | - | 45,957 | 0.18 | 13,311 | 0.15 | ||||
Ni | n.d. | 262 | 0.16 | n.d. | 275 | 0.26 | n.d. | 498 | 0.17 | 151 | 0.22 | 71 | 0.25 | - | - | - | n.d. | n.d. | ||||||||
Ga | 85 | 0.24 | 95 | 0.08 | 110 | 0.11 | 113 | 0.04 | 85 | 0.22 | 97 | 0.07 | 122 | 0 | 92 | 0.01 | 97 | 0.13 | 76 | 0.03 | 661 | 0.21 | 685 | 0.12 | - | |
Rb | 25 | 0.19 | 342 | 0.11 | 86 | 0.15 | 128 | 0.18 | 38 | 0.18 | 135 | 0.15 | 96 | 0.16 | 32 | 0.16 | 147 | 0.07 | - | 1755 | 0.03 | 16 | 0.27 | 388 | 0.21 | |
Sr | 716 | 0 | 397 | 0.04 | 657 | 0.07 | 183 | 0.09 | 728 | 0.03 | 478 | 0.05 | 1612 | 0.01 | 3187 | 0 | 1822 | 0.02 | 2613 | 0 | 4175 | 0.25 | 1837 | 0.1 | 5948 | 0.13 |
Y | 5768 | 0.08 | 4387 | 0.11 | 6257 | 0.15 | 4878 | 0.16 | 5176 | 0.08 | 3886 | 0.13 | 2847 | 0.11 | 4551 | 0.11 | 2773 | 0.07 | 2 | 0.08 | 3302 | 0.07 | 17,051 | 0.05 | 4869 | 0.18 |
Zr | 116,361 | 0.04 | 97,267 | 0.04 | 99,634 | 0.14 | 73,951 | 0.16 | 108,994 | 0.03 | 89,997 | 0.12 | 59,813 | 0.09 | 96,756 | 0.24 | 81,561 | 0.06 | 4 | 0.17 | 1006 | 0.25 | 5261 | 0.02 | 289 | 0.02 |
Nb | 7530 | 0.1 | 5429 | 0.13 | 6038 | 0.17 | 4205 | 0.17 | 8628 | 0.1 | 6474 | 0.15 | 5057 | 0.11 | 4782 | 0.23 | 3373 | 0.07 | 1 | 0.02 | 386 | 0.29 | 43,888 | 0.05 | 78,965 | 0.21 |
Cs | 2 | 0.02 | 3 | 0.01 | 4 | 0.06 | 4 | 0.25 | 3 | 0 | 2 | 0.03 | n.d. | 6 | 0.12 | 9 | 0.24 | - | n.d. | n.d. | n.d. | |||||
Ba | 560 | 0.12 | 136 | 0.14 | 359 | 0.2 | 90 | 0.29 | 264 | 0.16 | 150 | 0.2 | 706 | 0.11 | 753 | 0.12 | 162 | 0.3 | 1 | 0.02 | n.d. | n.d. | n.d. | |||
La | 4679 | 0.06 | 3617 | 0.09 | 4985 | 0.13 | 3561 | 0.14 | 4529 | 0.07 | 3545 | 0.12 | 3992 | 0.08 | 3418 | 0.09 | 3263 | 0.06 | 2 | 0.08 | 40,307 | 0.01 | 39,311 | 0.05 | 21,917 | 0.19 |
Ce | 9787 | 0 | 7656 | 0.01 | 10,756 | 0.08 | 7562 | 0.13 | 8869 | 0.05 | 7041 | 0.1 | 7254 | 0.06 | 6793 | 0.03 | 5991 | 0.06 | 3 | 0.07 | 99,395 | 0.01 | 99,091 | 0.06 | 71,217 | 0.2 |
Pr | 1022 | 0.06 | 792 | 0.09 | 1182 | 0.14 | 835 | 0.14 | 928 | 0.04 | 742 | 0.1 | 714 | 0.1 | 689 | 0.11 | 609 | 0.04 | 1 | 0.11 | 10,658 | 0.05 | 11,883 | 0.08 | 9870 | 0.2 |
Nd | 3781 | 0.08 | 2862 | 0.09 | 4421 | 0.14 | 3113 | 0.14 | 3361 | 0.05 | 2662 | 0.11 | 2398 | 0.08 | 2493 | 0.1 | 2195 | 0.09 | 2 | 0.13 | 34,492 | 0.02 | 42,860 | 0.02 | 39,717 | 0.17 |
Sm | 787 | 0.06 | 576 | 0.08 | 947 | 0.18 | 664 | 0.18 | 675 | 0.08 | 522 | 0.15 | 416 | 0.13 | 525 | 0.13 | 402 | 0.02 | <1 | 4,389 | 0.05 | 6,734 | 0.07 | 6,698 | 0.17 | |
Eu | 76 | 0.03 | 53 | 0.09 | 90 | 0.16 | 65 | 0.19 | 66 | 0.06 | 47 | 0.07 | 33 | 0.09 | 49 | 0.08 | 34 | 0.04 | <1 | 314 | 0.21 | 538 | 0.14 | 505 | 0.25 | |
Gd | 805 | 0.03 | 582 | 0.06 | 926 | 0.12 | 670 | 0.11 | 712 | 0.01 | 530 | 0.07 | 402 | 0.05 | 576 | 0.06 | 393 | 0.04 | <1 | 2498 | 0.06 | 5103 | 0.05 | 4041 | 0.2 | |
Tb | 141 | 0.04 | 104 | 0.02 | 161 | 0.12 | 119 | 0.09 | 124 | 0.04 | 93 | 0.06 | 70 | 0.09 | 108 | 0.1 | 62 | 0.12 | - | 309 | 0.2 | 692 | 0.15 | - | ||
Dy | 956 | 0.04 | 715 | 0.06 | 1033 | 0.14 | 782 | 0.13 | 854 | 0.04 | 635 | 0.1 | 452 | 0.06 | 746 | 0.08 | 430 | 0.06 | <1 | 937 | 0.27 | 3,475 | 0.05 | 1537 | 0.19 | |
Ho | 205 | 0.05 | 158 | 0.01 | 219 | 0.13 | 166 | 0.09 | 184 | 0.05 | 139 | 0.04 | 102 | 0.07 | 168 | 0.07 | 91 | 0.18 | - | - | 506 | 0.18 | - | |||
Er | 634 | 0.03 | 490 | 0.06 | 644 | 0.13 | 495 | 0.11 | 580 | 0.03 | 438 | 0.1 | 317 | 0.09 | 518 | 0.12 | 303 | 0 | - | 180 | 0.23 | 1,178 | 0.08 | 195 | 0.18 | |
Tm | 92 | 0.27 | 73 | 0.18 | 95 | 0.06 | 72 | 0.04 | 84 | 0.26 | 65 | 0.14 | 50 | 0.05 | 80 | 0.02 | - | - | - | - | 16 | 0.11 | ||||
Yb | 557 | 0.02 | 427 | 0.01 | 548 | 0.12 | 423 | 0.09 | 509 | 0.04 | 393 | 0.03 | 293 | 0.03 | 455 | 0.04 | 282 | 0.04 | - | - | 708 | 0.15 | - | |||
Lu | 66 | 0.25 | 53 | 0.11 | 68 | 0.14 | 50 | 0.01 | 57 | 0.23 | 46 | 0.05 | 40 | 0.12 | 61 | 0.12 | - | - | - | 54 | 0.24 | n.d. | ||||
Hf | 1982 | 0.01 | 1653 | 0.01 | 1593 | 0.09 | 1180 | 0.08 | 2002 | 0.02 | 1696 | 0.06 | 1151 | 0.04 | 1663 | 0.05 | 1550 | 0.04 | <1 | - | 105 | 0.12 | 21 | 0.24 | ||
Ta | 447 | 0.11 | 358 | 0.07 | 400 | 0.06 | 291 | 0.03 | 624 | 0.1 | 489 | 0.01 | 208 | 0.28 | 226 | 0.05 | 294 | 0.18 | - | - | 968 | 0.09 | 2123 | 0.23 | ||
W | 246 | 0.24 | 27 | 0.29 | 149 | 0.16 | 25 | 0.27 | - | 62 | 0.25 | 32 | 0.13 | 592 | 0.16 | 50 | 0.21 | n.d. | n.d. | n.d. | n.d. | |||||
Pb | 94 | 0.17 | 54 | 0.12 | 171 | 0.05 | 27 | 0.19 | 145 | 0.25 | 223 | 0.21 | 68 | 0.13 | 85 | 0.18 | 62 | 0.17 | - | 3864 | 0.24 | - | - | |||
Th | 29 | 0 | 65 | 0.02 | 62 | 0.11 | 28 | 0.07 | 24 | 0.02 | 100 | 0.05 | 27 | 0.11 | 16 | 0.07 | 27 | 0.02 | - | 13,934 | 0.16 | 1362 | 0.15 | 317 | 0.21 | |
U | 62 | 0.29 | 73 | 0.18 | 79 | 0.08 | 57 | 0.02 | 37 | 0.21 | 41 | 0.09 | 20 | 0.09 | 29 | 0.03 | - | - | - | - | - | |||||
La/Yb | 8.4 | 8.5 | 9.1 | 8.4 | 8.9 | 9.0 | 13.6 | 7.5 | 11.6 | - | - | - | - | |||||||||||||
Gd/Yb | 1.4 | 1.4 | 1.7 | 1.6 | 1.4 | 1.3 | 1.4 | 1.3 | 1.4 | - | - | - | - | |||||||||||||
Sm/Nd | 0.21 | 0.20 | 0.21 | 0.21 | 0.20 | 0.20 | 0.17 | 0.21 | 0.18 | - | 0.13 | 0.16 | 0.17 |
ID | Type | Unit | 2σ * | 2σ * | 2σ * | εNd(t) | 2σ * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
540286 | Eud | +13R | 0.211 | 0.512063 | 0.000005 | 0.1278 | 0.0006 | 0.51109 | 0.000007 | −1.0 | 0.1 | 1.27 |
540269 | Eud | TLK-A | 0.215 | 0.512085 | 0.000006 | 0.1302 | 0.0007 | 0.511094 | 0.000008 | −0.9 | 0.2 | 1.24 |
109202 | Eud | 0R | 0.205 | 0.512037 | 0.000005 | 0.1239 | 0.0006 | 0.511093 | 0.000007 | −0.9 | 0.1 | 1.27 |
109211 | Eud | +3B | 0.212 | 0.512058 | 0.000006 | 0.1281 | 0.0006 | 0.511083 | 0.000008 | −1.1 | 0.1 | 1.28 |
540286 | Pmo (cp) | +13R | 0.203 | 0.512039 | 0.000005 | 0.1230 | 0.0006 | 0.511102 | 0.000007 | −0.8 | 0.1 | 1.26 |
540269 | Pmo (cp) | TLK-A | 0.215 | 0.512075 | 0.000005 | 0.1297 | 0.0006 | 0.511087 | 0.000007 | −1.0 | 0.1 | 1.24 |
109202 | Pmo (cp) | 0R | 0.197 | 0.512006 | 0.000005 | 0.1193 | 0.0006 | 0.511098 | 0.000007 | −0.8 | 0.1 | 1.29 |
109211 | Pmo (gt) | +3B | 0.189 | 0.511970 | 0.000005 | 0.1143 | 0.0006 | 0.511100 | 0.000007 | −0.8 | 0.1 | 1.24 |
EJH/12/091 | Pmo (zr) | Hybrid | 0.174 | 0.511965 | 0.000005 | 0.1049 | 0.0005 | 0.511166 | 0.000007 | 0.5 | 0.1 | 1.12 |
AF/16/28 | Ep | 0.182 | 0.511891 | 0.000010 | 0.1097 | 0.0005 | 0.511055 | 0.000011 | −1.7 | 0.2 | 1.31 | |
AF/16/20 | Vit | 0.126 | 0.511678 | 0.000004 | 0.0761 | 0.0004 | 0.511098 | 0.000005 | −0.8 | 0.1 | 1.21 | |
520713 | Rkt | 0.158 | 0.511826 | 0.000005 | 0.0955 | 0.0005 | 0.511098 | 0.000006 | −0.8 | 0.1 | 1.22 | |
NJH/16/11 | Ncr | 0.173 | 0.511891 | 0.000005 | 0.1045 | 0.0005 | 0.511095 | 0.000007 | −0.9 | 0.1 | 1.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van de Ven, M.A.J.; Borst, A.M.; Davies, G.R.; Hunt, E.J.; Finch, A.A. Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals 2019, 9, 422. https://doi.org/10.3390/min9070422
van de Ven MAJ, Borst AM, Davies GR, Hunt EJ, Finch AA. Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals. 2019; 9(7):422. https://doi.org/10.3390/min9070422
Chicago/Turabian Stylevan de Ven, Mathijs A. J., Anouk M. Borst, Gareth R. Davies, Emma J. Hunt, and Adrian A. Finch. 2019. "Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade" Minerals 9, no. 7: 422. https://doi.org/10.3390/min9070422
APA Stylevan de Ven, M. A. J., Borst, A. M., Davies, G. R., Hunt, E. J., & Finch, A. A. (2019). Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals, 9(7), 422. https://doi.org/10.3390/min9070422