Next Article in Journal
Volatile Chalcophile Elements in Native Sulfur from a Submarine Hydrothermal System at Kueishantao, Offshore NE Taiwan
Next Article in Special Issue
Nanoscale Structure of Zoned Laurites from the Ojén Ultramafic Massif, Southern Spain
Previous Article in Journal
Mineralogy and Garnet Sm–Nd Dating for the Hongshan Skarn Deposit in the Zhongdian Area, SW China
Previous Article in Special Issue
Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Mineralogy of Zirconium in Iron-Oxides: A Micron- to Nanoscale Study of Hematite Ore from Peculiar Knob, South Australia

1
School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
2
Formerly Arrium Mining, now SIMEC Mining, Level 2, 169 Fullarton Road, Dulwich, SA 5065, Australia
3
Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia
4
BHP Olympic Dam, Adelaide, SA 5000, Australia
*
Author to whom correspondence should be addressed.
Minerals 2019, 9(4), 244; https://doi.org/10.3390/min9040244
Received: 1 April 2019 / Revised: 16 April 2019 / Accepted: 17 April 2019 / Published: 19 April 2019
(This article belongs to the Special Issue Minerals Down to the Nanoscale: A Glimpse at Ore-Forming Processes)
  |  
PDF [12713 KB, uploaded 21 April 2019]
  |  

Abstract

Zirconium is an element of considerable petrogenetic significance but is rarely found in hematite at concentrations higher than a few parts-per-million (ppm). Coarse-grained hematite ore from the metamorphosed Peculiar Knob iron deposit, South Australia, contains anomalous concentrations of Zr and has been investigated using microanalytical techniques that can bridge the micron- to nanoscales to understand the distribution of Zr in the ore. Hematite displays textures attributable to annealing under conditions of high-grade metamorphism, deformation twins (r~85° to hematite elongation), relict magnetite and fields of sub-micron-wide inclusions of baddeleyite as conjugate needles with orientation at ~110°/70°. Skeletal and granoblastic zircon, containing only a few ppm U, are both present interstitial to hematite. Using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) spot analysis and mapping, the concentration of Zr in hematite is determined to be ~260 ppm on average (up to 680 ppm). The Zr content is, however, directly attributable to nm-scale inclusions of baddeleyite pervasively distributed throughout the hematite rather than Zr in solid solution. Distinction between nm-scale inclusions and lattice-bound trace element substitutions cannot be made from LA-ICP-MS data alone and requires nanoscale characterization. Scandium-rich (up to 0.18 wt. % Sc2O3) cores in zircon are documented by microprobe analysis and mapping. Using high-angle annular dark field scanning transmission electron microscopy imaging (HAADF-STEM) and energy-dispersive spectrometry STEM mapping of foils prepared in-situ by focused ion beam methods, we identify [ 0 1 ¯ 1 ]baddeleyite epitaxially intergrown with [ 2 2 ¯ .1 ]hematite. Lattice vectors at 84–86° underpinning the epitaxial intergrowth orientation correspond to directions of r-twins but not to the orientation of the needles, which display a ~15° misfit. This is attributable to directions of trellis exsolutions in a precursor titanomagnetite. U–Pb dating of zircon gives a 206Pb/238U weighted mean age of 1741 ± 49 Ma (sensitive high-resolution ion microprobe U–Pb method). Based on the findings presented here, detrital titanomagnetite from erosion of mafic rocks is considered the most likely source for Zr, Ti, Cr and Sc. Whether such detrital horizons accumulated in a basin with chemical precipitation of Fe-minerals (banded iron formation) is debatable, but such Fe-rich sediments clearly included detrital horizons. Martitization during the diagenesis-supergene enrichment cycle was followed by high-grade metamorphism during the ~1.73–1.69 Ga Kimban Orogeny during which martite recrystallized as granoblastic hematite. Later interaction with hydrothermal fluids associated with ~1.6 Ga Hiltaba-granitoids led to W, Sn and Sb enrichment in the hematite. By reconstructing the evolution of the massive orebody at Peculiar Knob, we show how application of complimentary advanced microanalytical techniques, in-situ and on the same material but at different scales, provides critical constraints on ore-forming processes. View Full-Text
Keywords: hematite; Zr; baddeleyite; zircon; trace elements; HAADF-STEM; Peculiar Knob hematite; Zr; baddeleyite; zircon; trace elements; HAADF-STEM; Peculiar Knob
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Keyser, W.; Ciobanu, C.L.; Cook, N.J.; Feltus, H.; Johnson, G.; Slattery, A.; Wade, B.P.; Ehrig, K. Mineralogy of Zirconium in Iron-Oxides: A Micron- to Nanoscale Study of Hematite Ore from Peculiar Knob, South Australia. Minerals 2019, 9, 244.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top