Kaolinite-Magnesite Based Ceramics. Part I: Surface Charge and Rheological Properties Optimization of the Suspensions for the Processing of Cordierite-Mullite Tapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Characterization Techniques
2.3. Dispersions Preparation
2.4. Acoustophoresis Analysis
2.5. Rheological Measurements
3. Results and Discussion
3.1. Raw Materials Characterizations
3.2. Zeta Potential Measurements
3.3. Rheological Properties
3.3.1. Continuous Flow Tests
3.3.2. Oscillatory Rheological Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stempkowska, A.; Mastalska-Popławska, J.; Izak, P.; Ogłaza, L.; Turkowska, M. Stabilization of kaolin clay slurry with sodium silicate of different silicate moduli. Appl. Clay Sci. 2017, 146, 147–151. [Google Scholar] [CrossRef]
- Konduri, M.K.; Fatehi, P. Designing anionic lignin based dispersant for kaolin suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 639–650. [Google Scholar] [CrossRef]
- Shaikh, S.M.; Nasser, M.S.; Hussein, I.; Benamor, A.; Onaizi, S.A.; Qiblawey, H. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review. Sep. Purif. Technol. 2017, 187, 137–161. [Google Scholar] [CrossRef]
- Andreola, F.; Castellini, E.; Ferreira, J.M.F.; Olhero, S.; Romagnoli, M. Effect of sodium hexametaphosphate and ageing on the rheological behaviour of kaolin dispersions. Appl. Clay Sci. 2006, 31, 56–64. [Google Scholar] [CrossRef]
- Chow, R.S. The stability of kaolinite-in-water dispersions. Colloids Surf. 1991, 61, 241–253. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. General introduction: Clays, clay minerals, and clay science. Dev. Clay Sci. 2006, 1, 1–18. [Google Scholar]
- Han, Y.; Liu, W.; Zhou, J.; Chen, J. Interactions between kaolinite AlOH surface and sodium hexametaphosphate. Appl. Surf. Sci. 2016, 387, 759–765. [Google Scholar] [CrossRef]
- Gupta, V.; Hampton, M.A.; Stokes, J.R.; Nguyen, A.V.; Miller, J.D. Particle interactions in kaolinite suspensions and corresponding aggregate structures. J. Colloid Interface Sci. 2011, 359, 95–103. [Google Scholar] [CrossRef]
- Hong, E.; Herbert, C.M.; Yeneneh, A.M.; Sen, T.K. Rheological characteristics of mixed kaolin–sand slurry, impacts of pH, temperature, solid concentration and kaolin–sand mixing ratio. Int. J. Environ. Sci. Technol. 2016, 13, 2629–2638. [Google Scholar] [CrossRef]
- Hasan, A.; Fatehi, P. Stability of kaolin dispersion in the presence of lignin-acrylamide polymer. Appl. Clay Sci. 2018, 158, 72–82. [Google Scholar] [CrossRef]
- Andreola, F.; Castellini, E.; Manfredini, T.; Romagnoli, M. The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. J. Eur. Ceram. Soc. 2004, 24, 2113–2124. [Google Scholar] [CrossRef]
- Andreola, F.; Castellini, E.; Lusvardi, G.; Menabue, L.; Romagnoli, M. Release of ions from kaolinite dispersed in deflocculant solutions. Appl. Clay Sci. 2007, 36, 271–278. [Google Scholar] [CrossRef]
- Ma, M. The dispersive effect of sodium silicate on kaolinite particles in process water: Implications for iron-ore processing. Clays Clay Miner. 2011, 59, 233–239. [Google Scholar] [CrossRef]
- Castellini, E.; Berthold, C.; Malferrari, D.; Bernini, F. Sodium hexametaphosphate interaction with 2: 1 clay minerals illite and montmorillonite. Appl. Clay Sci. 2013, 83, 162–170. [Google Scholar] [CrossRef]
- Landrou, G.; Brumaud, C.; Winnefeld, F.; Flatt, R.; Habert, G. Lime as an anti-plasticizer for self-compacting clay concrete. Materials 2016, 9, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houta, N.; Lecomte-Nana, G.L.; Tessier-Doyen, N.; Peyratout, C. Dispersion of phyllosilicates in aqueous suspensions: Role of the nature and amount of surfactant. J. Colloid Interface Sci. 2014, 425, 67–74. [Google Scholar] [CrossRef]
- Landrou, G.; Brumaud, C.; Plötze, M.L.; Winnefeld, F.; Habert, G. A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 252–260. [Google Scholar] [CrossRef]
- Böhnlein-Mauß, J.; Sigmund, W.; Wegner, G.; Meyer, W.H.; Heßel, F.; Seitz, K.; Roosen, A. The function of polymers in the tape casting of alumina. Adv. Mater. 1992, 4, 73–81. [Google Scholar] [CrossRef]
- Rubio-Hernández, F.J.; Páez-Flor, N.M.; Gómez-Merino, A.I.; Sánchez-Luque, F.J.; Delgado-García, R.; Goyos-Pérez, L. The influence of high-concentration Na hexametaphosphate dispersant on the rheological behavior of aqueous kaolin dispersions. Clays Clay Miner. 2016, 64, 210–219. [Google Scholar] [CrossRef]
- Marco, P.; Labanda, J.; Llorens, J. The effects of some polyelectrolyte chemical compositions on the rheological behaviour of kaolin suspensions. Powder Technol. 2004, 148, 43–47. [Google Scholar] [CrossRef]
- Nguyen, V.B.Q.; Kang, H.S.; Kim, Y.T. Effect of clay fraction and water content on rheological properties of sand–clay mixtures. Environ. Earth Sci. 2018, 77, 576. [Google Scholar] [CrossRef]
- Bitterlich, B.; Lutz, C.; Roosen, A. Rheological characterization of water-based slurries for the tape casting process. Ceram. Int. 2002, 28, 675–683. [Google Scholar] [CrossRef]
- Landrou, G.; Brumaud, C.; Habert, G. Influence of magnesium on deflocculated kaolinite suspension: Mechanism and kinetic control. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 196–204. [Google Scholar] [CrossRef]
- Pavlikov, V.M.; Garmash, E.P.; Yurchenko, V.A.; Pleskach, I.V.; Oleinik, G.S.; Grigor’ev, O.M. Mechanochemical activation of kaolin, pyrophyllite, and talcum and its effect on the synthesis of cordierite and properties of cordierite ceramics. Powder Metall. Met. Ceram. 2011, 49, 564–574. [Google Scholar] [CrossRef]
- Pilarska, A.; Paukszta, D.; Szwarc, K.; Jesionowski, T. The effect of modifiers and precipitation conditions on physicochemical properties of MgCO3 and its calcinates. Physicochem. Probl. Mine. Process. 2011, 46, 79–90. [Google Scholar]
- Frost, R.L.; Horváth, E.; Makó, É.; Kristóf, J.; Rédey, Á. Slow transformation of mechanically dehydroxylated kaolinite to kaolinite—An aged mechanochemically activated formamide-intercalated kaolinite study. Thermochim. Acta 2003, 408, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Lecomte-Nana, G.; Bonnet, J.P.; Soro, N. Influence of iron onto the structural reorganization process during the sintering of kaolins. J. Eur. Ceram. Soc. 2013, 33, 661–668. [Google Scholar] [CrossRef]
- Lecomte, G.L.; Bonnet, J.P.; Blanchart, P. A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1100 °C. J. Mater. Sci. 2007, 42, 8745–8752. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Ghosh, A.; Sinhamahapatra, S.; Tripathi, H.S. Effect of zirconia on densification and properties of natural Indian magnesite. Int. J. Miner. Process. 2015, 144, 40–45. [Google Scholar]
- Swartzen-Allen, S.L.; Matijevic, E. Surface and colloid chemistry of clays. Chem. Rev. 1974, 74, 385–400. [Google Scholar] [CrossRef]
- Das, G.K.; Kelly, N.; Muir, D.M. Rheological behaviour of lateritic smectite ore slurries. Miner. Eng. 2011, 24, 594–602. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, M.; Zhang, Z.; Leong, Y.K.; Zhang, Y.; Zhang, D. Rheological behaviour and stability characteristics of biochar-water slurry fuels: Effect of biochar particle size and size distribution. Fuel Process. Technol. 2017, 156, 27–32. [Google Scholar] [CrossRef]
- Merkus, H.G. Particle Size Measurements: Fundamentals, Practice, Quality; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Zhang, N.; Nguyen, A.V.; Zhou, C. Impact of interfacial Al-and Si-active sites on the electrokinetic properties, surfactant adsorption and floatability of diaspore and kaolinite minerals. Miner. Eng. 2018, 122, 258–266. [Google Scholar] [CrossRef]
- Jeldres, R.I.; Piceros, E.C.; Leiva, W.H.; Toledo, P.G.; Herrera, N. Viscoelasticity and yielding properties of flocculated kaolinite sediments in saline water. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 1009–1015. [Google Scholar] [CrossRef]
- Gence, N.; Ozbay, N. pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions. Appl. Surf. Sci. 2006, 252, 8057–8061. [Google Scholar] [CrossRef]
- Chen, G.; Tao, D. Effect of solution chemistry on flotability of magnesite and dolomite. Int. J. Miner. Process. 2004, 74, 343–357. [Google Scholar] [CrossRef]
- Rao, F.; Ramirez-Acosta, F.J.; Sanchez-Leija, R.J.; Song, S.; Lopez-Valdivieso, A. Stability of kaolinite dispersions in the presence of sodium and aluminum ions. Appl. Clay Sci. 2011, 51, 38–42. [Google Scholar] [CrossRef]
- Diz, H.M.M.; Rand, B. The mechanism of deflocculation of kaolinite by polyanions. Br. Ceram. Trans. J. 1990, 89, 77–82. [Google Scholar]
- Brady, P.V.; Cygan, R.T.; Nagy, K.L. Molecular controls on kaolinite surface charge. J. Colloid Interface Sci. 1996, 183, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Miller, J.D. Surface force measurements at the basal planes of ordered kaolinite particles. J. Colloid Interface Sci. 2010, 344, 362–371. [Google Scholar] [CrossRef]
- Tian, L.; Tahmasebi, A.; Yu, J. An experimental study on thermal decomposition behavior of magnesite. J. Therm. Anal. Calorim. 2014, 118, 1577–1584. [Google Scholar] [CrossRef]
- Cinku, K.; Karakas, F.; Boylu, F. Effect of calcinated magnesite on rheology of bentonite suspensions. Magnesia-bentonite interaction. Physicochem. Probl. Miner. Process. 2014, 50, 453–466. [Google Scholar]
- Botero, A.E.C.; Torem, M.L.; de Mesquita, L.M.S. Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Miner. Eng. 2008, 21, 83–92. [Google Scholar] [CrossRef]
- Tang, F.; Fudouzi, H.; Sakka, Y. Fabrication of macroporous alumina with tailored porosity. J. Am. Ceram. Soc. 2003, 86, 2050–2054. [Google Scholar] [CrossRef]
- Dultz, S.; Woche, S.K.; Mikutta, R.; Schrapel, M.; Guggenberger, G. Size and charge constraints in microaggregation: Model experiments with mineral particle size fractions. Appl. Clay Sci. 2019, 170, 29–40. [Google Scholar] [CrossRef]
- Cruz, N.; Peng, Y. Rheology measurements for flotation slurries with high clay contents—A critical revie. Miner. Eng. 2016, 98, 137–150. [Google Scholar] [CrossRef]
- Bossard, F.; Moan, M.; Aubry, T. Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions. J. Rheol. 2007, 51, 1253–1270. [Google Scholar] [CrossRef]
- Batistella, M.; Caro-Bretelle, A.S.; Otazaghine, B.; Ienny, P.; Sonnier, R.; Petter, C.; Lopez-Cuesta, J.M. The influence of dispersion and distribution of ultrafine kaolinite in polyamide-6 on the mechanical properties and fire retardancy. Appl. Clay Sci. 2015, 116, 8–15. [Google Scholar] [CrossRef]
Raw Material | SSA (BET) (±0.1 m2·g−1) | Density (g·cm−3) | Chemical Composition (mass%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | MgO | Fe2O3 | TiO2 | CaO | Na2O | K2O | Loss on Ignition at 1050 °C | |||
KT2 | 25.0 | 2.6 | 47.8 | 32.9 | 0.6 | 3.5 | 0.5 | 0.1 | 0.1 | 2.9 | 11.5 |
Magnesite | 11.7 | 2.9 | 3.2 | 0.1 | 42.7 | 0.4 | - | 3.2 | - | - | 50.4 |
Dispersants | Suspensions with Magnesite Addition (mass%) | Critical Modulus G’c (Pa) | Critical Deformation (%) | Cohesive Energy Ec (mJ/m3) |
---|---|---|---|---|
NaHMP | 0 | 14.4 | 13.3 | 1273.6 |
3 | 2.7 | 3.5 | 16.5 | |
6 | 339.4 | 2.3 | 897.7 | |
12 | 606.8 | 1.7 | 887.2 | |
NaSi | 0 | 4.8 | 3.8 | 34.7 |
3 | 4.5 | 3.5 | 27.6 | |
6 | 6.1 | 3.1 | 29.3 | |
12 | 15.2 | 13.4 | 1364.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammas, A.; Lecomte-Nana, G.; Azril, N.; Daou, I.; Peyratout, C.; Zibouche, F. Kaolinite-Magnesite Based Ceramics. Part I: Surface Charge and Rheological Properties Optimization of the Suspensions for the Processing of Cordierite-Mullite Tapes. Minerals 2019, 9, 757. https://doi.org/10.3390/min9120757
Hammas A, Lecomte-Nana G, Azril N, Daou I, Peyratout C, Zibouche F. Kaolinite-Magnesite Based Ceramics. Part I: Surface Charge and Rheological Properties Optimization of the Suspensions for the Processing of Cordierite-Mullite Tapes. Minerals. 2019; 9(12):757. https://doi.org/10.3390/min9120757
Chicago/Turabian StyleHammas, Aghiles, Gisèle Lecomte-Nana, Nadjet Azril, Imane Daou, Claire Peyratout, and Fatima Zibouche. 2019. "Kaolinite-Magnesite Based Ceramics. Part I: Surface Charge and Rheological Properties Optimization of the Suspensions for the Processing of Cordierite-Mullite Tapes" Minerals 9, no. 12: 757. https://doi.org/10.3390/min9120757
APA StyleHammas, A., Lecomte-Nana, G., Azril, N., Daou, I., Peyratout, C., & Zibouche, F. (2019). Kaolinite-Magnesite Based Ceramics. Part I: Surface Charge and Rheological Properties Optimization of the Suspensions for the Processing of Cordierite-Mullite Tapes. Minerals, 9(12), 757. https://doi.org/10.3390/min9120757