C- and N-Bearing Species in Reduced Fluids in the Simplified C–O–H–N System and in Natural Pelite at Upper Mantle P–T Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Analytical Techniques
3. Results
4. Discussion
4.1. Carbon Species
4.2. N-Bearing Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Etiope, G.; Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 2013, 51, 276–299. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408–20413. [Google Scholar] [CrossRef] [PubMed]
- Luth, R.W. Volatiles in Earth’s mantle. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; Volume 3, pp. 355–391. [Google Scholar]
- Sverjensky, D.A.; Stagno, V.; Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci. 2014, 7, 909. [Google Scholar] [CrossRef]
- Smith, E.M.; Shirey, S.B.; Nestola, F.; Bullock, E.S.; Wang, J.; Richardson, S.H.; Wang, W. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 2016, 354, 1403–1405. [Google Scholar] [CrossRef]
- Bebout, G.E.; Lazzeri, K.E.; Geiger, C.A. Pathways for nitrogen cycling in Earth’s crust and upper mantle: A review and new results for microporous beryl and cordierite. Am. Mineral. 2016, 101, 7–24. [Google Scholar] [CrossRef]
- Kolesnikov, A.Y.; Saul, J.M.; Kutcherov, V.G. Chemistry of hydrocarbons under extreme thermobaric conditions. ChemistrySelect 2017, 2, 1336–1352. [Google Scholar] [CrossRef]
- Matveev, S.; Ballhaus, C.; Fricke, K.; Truckenbrodt, J.; Ziegenben, D. Volatiles in the Earth’s mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim. Cosmochim. Acta 1997, 61, 3081–3088. [Google Scholar] [CrossRef]
- Sokol, A.G.; Palyanova, G.A.; Palyanov, Y.N.; Tomilenko, A.A.; Melenevsky, V.N. Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochim. Cosmochim. Acta 2009, 73, 5820–5834. [Google Scholar] [CrossRef]
- Sokol, A.G.; Tomilenko, A.A.; Bul’bak, T.A.; Palyanova, G.A.; Sokol, I.A.; Palyanov, Y.N. Carbon and Nitrogen Speciation in N-poor C–O–H–N Fluids at 6.3 GPa and 1100–1400 °C. Sci. Rep. 2017, 7, 706. [Google Scholar] [CrossRef]
- Matjuschkin, V.; Woodland, A.B.; Yaxley, G.M. Methane-bearing fluids in the upper mantle: An experimental approach. Contrib. Mineral. Petrol. 2019, 174, 1. [Google Scholar] [CrossRef]
- Kenney, J.F.; Kutcherov, V.A.; Bendeliani, N.A.; Alekseev, V.A. The evolution of multicomponent systems at high pressures: The thermodynamic stability of the hydrogen-carbon system: The genesis of hydrocarbons and the origin of petroleum. Proc. Nat. Acad. Sci. USA 2002, 99, 10976–10981. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.P.; Hemley, R.J.; Mao, H.; Herschbach, D.R.; Fried, L.E.; Howard, W.M.; Bastea, S. Generation of methane in the Earth’s mantle: In situ high pressure–temperature measurements of carbonate reduction. Proc. Nat. Acad. Sci. USA 2004, 101, 14023–14026. [Google Scholar] [CrossRef] [PubMed]
- Kutcherov, V.G.; Kolesnikov, A.Y.; Dyuzheva, T.I.; Kulikova, L.F.; Nikolaev, N.N.; Sazanova, O.A.; Braghkin, V.V. Synthesis of Complex Hydrocarbon Systems at Temperatures and Pressures Corresponding to the Earth’s Upper Mantle Conditions. Dokl. Phys. Chem. 2010, 433, 132–135. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F. Effect of H2O on diamond crystal growth in metal–carbon systems. Cryst. Growth Des. 2010, 12, 5571–5578. [Google Scholar] [CrossRef]
- Mukhina, E.; Kolesnikov, A.; Kutcherov, V. The lower pT limit of deep hydrocarbon synthesis by CaCO3 aqueous reduction. Sci. Rep. 2017, 7, 5749. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Zhang, L.; Tian, M.; Zhu, J.; Liu, X.; Liu, J.; Höfer, H.E.; Stagno, V.; Fei, Y. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochim. Cosmochim. Acta 2018, 239, 390–408. [Google Scholar] [CrossRef]
- Sokol, A.G.; Tomilenko, A.A.; Bul’bak, T.A.; Sokol, I.A.; Persikov, E.S.; Bukhtiyarov, P.G.; Palyanov, Y.N. Distribution of light alkanes in the reaction of graphite hydrogenation at pressure of 0.1–7.8 GPa and temperatures of 1000–1350 °C. High Press. Res. 2018, 38, 468–481. [Google Scholar] [CrossRef]
- Sokol, A.G.; Tomilenko, A.A.; Bul’bak, T.A.; Sokol, I.A.; Zaikin, P.A.; Palyanova, G.A.; Palyanov, Y.N. Hydrogenation of carbon at 5.5–7.8 GPa and 1100–1400 °C: Implications to formation of hydrocarbons in reduced mantles of terrestrial planets. Phys. Earth Planet. Inter. 2019, 291, 12–23. [Google Scholar] [CrossRef]
- Sokol, A.; Tomilenko, A.; Sokol, I.; Zaikin, P.; Bul’bak, T. Formation of Hydrocarbons in the Presence of Native Iron at Upper Mantle Conditions: Experimental Constraints. Minerals 2019, in press. [Google Scholar]
- Mikhail, S.; Sverjensky, D.A. Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat. Geosci. 2014, 7, 816–819. [Google Scholar] [CrossRef]
- Sokol, A.G.; Tomilenko, A.A.; Bul’bak, T.A.; Kruk, A.N.; Sokol, I.A.; Palyanov, Y.N. Fate of fluids at the base of subcratonic lithosphere: Experimental constraints at 5.5–7.8 GPa and 1150–1350 deg C. Lithos 2018, 318, 419–433. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Sokolov, S.V.; Nekrasov, A.N.; Chukanova, V.N.; Naumova, I.S. On the problem of the formation and geochemical role of bituminous matter in pegmatites of the Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia. Geochem. Int. 2006, 44, 715–728. [Google Scholar] [CrossRef]
- Smith, E.M.; Shirey, S.B.; Richardson, S.H.; Nestola, F.; Bullock, E.S.; Wang, J.; Wang, W. Blue boron-bearing diamonds from Earth’s lower mantle. Nature 2018, 560, 84. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, N.V.; Sobolev, A.V.; Tomilenko, A.A.; Kuz’min, D.V.; Grakhanov, S.A.; Batanova, V.G.; Logvinova, A.M.; Bul’bak, T.A.; Kostrovitskii, S.I.; Yakovlev, D.A.; et al. Prospects of search for diamondiferous kimberlites in the northeastern Siberian. Platform. Russ. Geol. Geophys. 2018, 59, 1365–1379. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Tomilenko, A.A.; Bul’bak, T.A.; Logvinova, A.M. Composition of volatile components in the diamonds, associated garnet and olivine from diamondiferous peridotites from the Udachnaya pipe, Yakutia, Russia (by coupled gas chromatographic-mass spectrometric analysis). Engineering 2019, 5, 471–478. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Tomilenko, A.A.; Wirth, R.; Bul’bak, T.A.; Luk’yanova, L.I.; Fedorova, E.N.; Reutsky, V.N.; Efimova, E.S. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta 2019, 266, 197–219. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Schmidt, M.; Poli, S. Devolatilization during subduction. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; pp. 669–701. [Google Scholar]
- Watenphul, A.; Wunder, B.; Heinrich, W. High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle. Am. Mineral. 2009, 94, 283–292. [Google Scholar] [CrossRef]
- Watenphul, A.; Wunder, B.; Wirth, R.; Heinrich, W. Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth’s mantle. Chem. Geol. 2010, 270, 240–248. [Google Scholar] [CrossRef]
- Domanik, K.J.; Holloway, J.R. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim. Cosmochim. Acta 1996, 60, 4133–4150. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Vielzeuf, D.; Auzanneau, E. Melting and dissolution of subducting crust at high pressurfufes: The key role of white mica. Earth Planet. Sci. Lett. 2004, 228, 65–84. [Google Scholar] [CrossRef]
- Busigny, V.; Cartigny, P.; Philippot, P.; Ader, M.; Javoy, M. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe). Earth Planet. Sci. Lett. 2003, 215, 27–42. [Google Scholar] [CrossRef]
- Cartigny, P.; Harris, J.W.; Javoy, M. Diamond genesis, mantle fractionations and mantle nitrogen content: A study of δ13C–N concentrations in diamonds. Earth Planet. Sci. Lett. 2001, 185, 85–98. [Google Scholar] [CrossRef]
- Li, Y.; Keppler, H. Nitrogen speciation in mantle and crustal fluids. Geochim. Cosmochim. Acta 2014, 129, 13–32. [Google Scholar] [CrossRef]
- Sokol, A.G.; Tomilenko, A.A.; Bul’bak, T.A.; Kruk, A.N.; Zaikin, P.A.; Sokol, I.A.; Seryotkin, Y.V.; Palyanov, Y.N. The Fe–C–O–H–N system at 6.3–7.8 GPa and 1200–1400 °C: Implications for deep carbon and nitrogen cycles. Contrib. Mineral. Petrol. 2018, 173, 47. [Google Scholar] [CrossRef]
- Sokol, A.G.; Palyanov, Y.N.; Tomilenko, A.A.; Bul’bak, T.A.; Palyanova, G.A. Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa. Earth Planet. Sci. Lett. 2017, 460, 234–243. [Google Scholar] [CrossRef]
- Sokol, E.; Kokh, S.; Kozmenko, O.; Novikova, S.; Khvorov, P.; Nigmatulina, E.; Belogub, E.; Kirillov, M. Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea). Minerals 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Karpenko, V.Y.; Pautov, L.A.; Agakhanov, A.A.; Khvorov, P.V. On Nitrogen Content in the Schist of the Mun’-Khambo Ridge (N. Ural); The Ural Mineralogical Collected Papers #11. Scientific Edition; Institute of Mineralogy, Ural Branch of Russian Academy of Sciences: Miass, Russia, 2001; p. 330. [Google Scholar]
- Li, L.; Bebout, G.E. Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J. Geophys. Res. Solid Earth 2005, 110, B11202. [Google Scholar] [CrossRef]
- Busigny, V.; Cartigny, P.; Philippot, P. Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim. Cosmochim. Acta 2011, 75, 7502–7521. [Google Scholar] [CrossRef]
- Bebout, G.E.; Agard, P.; Kobayashi, K.; Moriguti, T.; Nakamura, E. Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chem. Geol. 2013, 342, 1–20. [Google Scholar] [CrossRef]
- Busigny, V.; Bebout, G.E. Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions. Elements 2013, 9, 353–358. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Sokol, A.G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10, 3169–3175. [Google Scholar] [CrossRef]
- Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High-temperature calibration of a multi-anvil high-pressure apparatus. High Press. Res. 2015, 35, 139–147. [Google Scholar] [CrossRef]
- Luth, R.W. Natural versus experimental control of oxidation state: Effects on the composition and speciation of C–O–H fluids. Am. Mineral. 1989, 74, 50–57. [Google Scholar]
- Dementyev, S.N.; Drebushchak, V.A. Zeolites’ dehydration under dynamic regime. Geochem. Int. 1992, 9, 1361–1367. [Google Scholar]
- Theule, P.; Borget, F.; Mispelaer, F.; Danger, G.; Duvernay, F.; Guillemin, J.C.; Chiavassa, T. Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astron. Astrophys. 2011, 534, A64. [Google Scholar] [CrossRef] [Green Version]
- Foley, S. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J. Petrol. 2011, 52, 1363–1391. [Google Scholar] [CrossRef]
- Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 2013, 493, 84. [Google Scholar] [CrossRef]
- Robertson, A.J.B. The Pyrolysis of Methane, Ethane and n-butane on a Platinum Filament. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1949, 199, 394. [Google Scholar]
- Belgued, M.; Amariglio, A.; Paréja, P.; Amariglio, H. Oxygen-Free conversion of methane to higher alkanes through an isothermal two-step reaction on platinum (EUROPT-1): II. hydrogenation of the adspecies resulting from the chemisorption of methane. J. Catal. 1996, 159, 449–457. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J. Why gold is the noblest of all the metals. Nature 1995, 376, 238. [Google Scholar] [CrossRef]
- McEwan, L.; Julius, M.; Roberts, S.; Fletcher, J.C.Q. A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull. 2010, 43, 298. [Google Scholar]
- Mowbray, D.J.; Migani, A.; Walther, G.; Cardamone, D.M.; Rubio, A. Gold and methane: A noble combination for delicate oxidation. J. Phys. Chem. Lett. 2013, 4, 3006–3012. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Cody, G.D.; Hemley, R.J. In situ diamond-anvil cell observations of methanogenesis at high pressures and temperatures. Energy Fuels 2009, 23, 5571–5579. [Google Scholar] [CrossRef]
- Stachel, T.; Luth, R.W. Diamond formation—Where, when and how? Lithos 2015, 220, 200–220. [Google Scholar] [CrossRef]
Run# | P (GPa) | T (°C) | Buffer | Capsule | τ (h) | Compositions of Samples, mg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gr | Ms | Pelite | Mica Schist | C3H6N6 | H2O | C22H46 | Ag2C2O4 | Dm | ||||||
1668_2_1 | 5.5 | 1150 | - | Pt | 10 | 10.1 | - | - | - | - | - | - | - | - |
1906_2_1 | 6.3 | 1400 | - | Pt | 0.33 | 8.4 | - | - | - | - | - | - | - | - |
1969_2_1 | 5.5 | 1150 | MMO | Pt | 40 | 8.5 | - | - | - | - | 0.8 | - | - | |
996_5_6 | 5.5 | 1200 | MMO | Pt | 10 | 9.8 | - | - | - | - | 0.5 | - | ||
2107_2_3 * | 6.3 | 1200 | MMO | Au | 10 | 9.5 | - | - | - | - | 0.5 | - | - | |
2107_2_4 * | 6.3 | 1200 | MMO | Au | 10 | 10.8 | - | - | - | - | - | - | - | - |
1942_2_2 | 7.8 | 1350 | MMO | Pt | 10 | 9.7 | - | - | - | - | - | - | - | - |
1975_2_1 | 7.8 | 1350 | IW | Pt | 10 | 16.4 | - | - | - | - | - | - | - | - |
1670_2_1 | 7.8 | 1350 | IW | Pt | 10 | 11.4 | - | - | - | - | - | - | - | - |
1670_2_3 | 7.8 | 1350 | IW | Pt | 10 | - | - | - | - | - | - | - | 8.1 | |
1695_1_4 | 3.8 | 800 | MMO | Au | 40 | - | 8.5 | - | - | 0.5 | - | - | - | |
1981_2_6 | 5.5 | 1000 | MMO | Au | 40 | 2.1 | 8.3 | - | - | - | 0.9 | - | - | - |
2093_2_1 | 6.3 | 1000 | MMO | Au | 60 | - | 9.8 | - | - | - | - | - | - | |
2093_2_3 | 6.3 | 1000 | MMO | Au | 60 | - | - | 10.9 | - | - | - | - | - |
Muscovite | Pelite * (Maykop Fm. Russia) | Mica Schist ** (Polar Ural, Russia) | |
---|---|---|---|
SiO2 | 46.3 | 53.9 | 48.4 |
TiO2 | 0.1 | 0.8 | 1.4 |
Al2O3 | 34.6 | 16.3 | 22.4 |
FeO | 1.5 | 7.3 | 10.8 |
MnO | 0.1 | 0.1 | 0.2 |
MgO | 0.8 | 3.2 | 4.3 |
CaO | - | 1.8 | 0.6 |
Na2O | 0.5 | 1.3 | 3.1 |
K2O | 10.8 | 2.9 | 3.3 |
P2O5 | - | 0.1 | 0.3 |
BaO | 0.4 | - | 0.1 |
LOI | - | 11.1 | 4.1 |
Total | 95.1 | 99.0 | 99.2 |
Run# | Phase | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | BaO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1695_1_4 | Ms | 45.5 | 0.6 | 31.7 | 2.9 | – | 1.6 | - | 0.5 | 10.7 | 0.4 | 93.9 |
1981_2_6 | Ms | 47.6 | 0.2 | 29.5 | 3.1 | - | 1.7 | - | - | 11.3 | 0.5 | 93.8 |
Ky | 36.6 | 0.0 | 63.5 | 0.3 | - | - | - | - | 100.4 | |||
2093_2_1 | Ms | 52.5 | 1.1 | 23.5 | 1.6 | - | 4.6 | - | - | 11.5 | - | 94.9 |
Grt | 40.5 | 0.6 | 21.9 | 20.9 | 0.7 | 8.3 | 6.0 | - | - | - | 99.7 | |
Omp | 57.6 | 0.3 | 21.1 | 1.4 | - | 3.1 | 3.5 | 11.7 | - | - | 98.5 | |
Coe | 98.9 | - | - | - | - | - | - | - | - | - | 98.9 | |
Ky | 38.2 | - | 59.5 | 1.2 | - | - | - | - | - | - | 98.8 | |
Ru | 0.5 | 95.7 | 1.6 | 0.6 | - | - | - | - | - | - | 98.3 | |
2093_2_3 | Ms | 52.3 | 1.1 | 24.5 | 2.5 | - | 4.2 | - | - | 10.7 | - | 95.3 |
Grt | 38.1 | 0.2 | 21.2 | 29.5 | 0.5 | 9.4 | 0.6 | - | - | 99.6 | ||
Omp | 58.7 | 0.4 | 23.4 | 1.7 | 0.0 | 1.2 | 1.2 | 13.4 | 0.0 | - | 100.0 | |
Ky | 36.8 | 0.0 | 62.8 | 0.4 | - | - | - | - | - | - | 100.0 | |
Ru | 0.5 | 96.1 | 1.8 | 0.9 | - | - | - | - | - | - | 99.3 |
Run # | Alkanes | Alcohols, Ethers | Aldehydes | Ketones | Carb. Acids | H2O | CO2 | N2 | CH3N | H3N |
---|---|---|---|---|---|---|---|---|---|---|
1668_2_1 | 3.9 | 3.3 | 15.2 | 5.3 | 1.6 | 4.1 | 42.9 | 17.7 | 0.2 | 0.0 |
1906_2_1 | 26.6 | 0.4 | 1.7 | 0.6 | 16.9 | 37.5 | 10.7 | 4.3 | 0.1 | 0.0 |
1969_2_1 | 69.9 | 1.2 | 2.5 | 2.2 | 1.9 | 11.7 | 0.8 | 0.6 | 0.9 | 5.1 |
996_5_6 | 25.3 | 0.8 | 0.9 | 0.4 | 1.7 | 62.0 | 0.9 | 0.2 | 0.7 | 6.0 |
1942_2_ 2 * | 30.4 | 3.6 | 15.1 | 9.2 | 5.7 | 13.1 | 3.6 | 7.2 | 0.1 | 0.5 |
1975_2_1 | 57.3 | 1.0 | 1.2 | 1.3 | 2.4 | 16.9 | 0.5 | 10.6 | 0.3 | 6.9 |
1670_2_1 | 53.1 | 2.2 | 3.6 | 2.3 | 17.3 | 9.8 | 1.7 | 4.3 | 0.5 | 0.4 |
1670_2_3 | 52.2 | 3.6 | 2.2 | 2.2 | 2.2 | 12.4 | 1.0 | 15.2 | 0.8 | 5.5 |
1695_1_4 | 27.0 | 0.1 | 0.2 | 0.1 | 0.3 | 26.4 | 0.9 | 13.3 | 0.5 | 30.8 |
1981_2_6 | 14.7 | 0.2 | 0.2 | 0.0 | 0.2 | 81.4 | 0.3 | 0.0 | 1.1 | 1.2 |
2093_2_1 | 15.3 | 0.0 | 0.0 | 0.0 | 0.0 | 80.8 | 0.0 | 0.3 | 3.2 | 0.4 |
2093_2_3 | 39.0 | 0.1 | 0.1 | 0.1 | 0.0 | 48.0 | 0.3 | 0.0 | 12.4 | 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokol, I.; Sokol, A.; Bul’bak, T.; Nefyodov, A.; Zaikin, P.; Tomilenko, A. C- and N-Bearing Species in Reduced Fluids in the Simplified C–O–H–N System and in Natural Pelite at Upper Mantle P–T Conditions. Minerals 2019, 9, 712. https://doi.org/10.3390/min9110712
Sokol I, Sokol A, Bul’bak T, Nefyodov A, Zaikin P, Tomilenko A. C- and N-Bearing Species in Reduced Fluids in the Simplified C–O–H–N System and in Natural Pelite at Upper Mantle P–T Conditions. Minerals. 2019; 9(11):712. https://doi.org/10.3390/min9110712
Chicago/Turabian StyleSokol, Ivan, Alexander Sokol, Taras Bul’bak, Andrey Nefyodov, Pavel Zaikin, and Anatoly Tomilenko. 2019. "C- and N-Bearing Species in Reduced Fluids in the Simplified C–O–H–N System and in Natural Pelite at Upper Mantle P–T Conditions" Minerals 9, no. 11: 712. https://doi.org/10.3390/min9110712
APA StyleSokol, I., Sokol, A., Bul’bak, T., Nefyodov, A., Zaikin, P., & Tomilenko, A. (2019). C- and N-Bearing Species in Reduced Fluids in the Simplified C–O–H–N System and in Natural Pelite at Upper Mantle P–T Conditions. Minerals, 9(11), 712. https://doi.org/10.3390/min9110712