Recovery of Residual Silver-Bearing Minerals from Low-Grade Tailings by Froth Flotation: The Case of Zgounder Mine, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Campaign
2.2. Tailing Characterization
2.3. Flotation Tests
3. Results and Discussion
3.1. Tailing Characterization Results
3.2. Size-by-Size Chemistry Analysis
3.3. Flotation Kinetics
3.4. Selection of Collector and Optimal pH
3.5. Selection of the Frother
3.6. Effect of Collector Dosage
3.7. Effects of Other Parameters
3.8. Flotation Tests with Optimized Parameters (Flotation Open Circuit Tests)
3.9. Environmental Behavior of Cleaned Tailings
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Acronyms and Abbreviations
AAS | Atomic absorption spectroscopy |
AP | Acidity potential |
BSE | Back Scattered Electrons |
Cin | Inorganic carbon content |
EDS | Energy dispersive spectroscopy |
Gs | Specific gravity |
MIB | Methyl isobutyl carbinol |
NNP | Net neutralization potential |
NP | Neutralization potential |
SEM | Scanning electron microscopy |
TCLP | Toxicity characteristic leaching procedure |
TSF | Tailing storage facility |
XRD | X-ray diffraction |
ZMT | Zgounder Mine Tailings |
References
- Schweikert, K. Are gold and silver cointegrated? New evidence from quantile cointegrating regressions. J. Bank. Financ. 2018, 88, 44–51. [Google Scholar] [CrossRef]
- Lucey, M.E.; O’Connor, F.A. Mind the gap: Psychological barriers in gold and silver prices. Financ. Res. Lett. 2016, 17, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Eryiğit, M. Short-term and long-term relationships between gold prices and precious metal (palladium, silver and platinum) and energy (crude oil and gasoline) prices. Econ. Res. 2017, 30, 499–510. [Google Scholar] [CrossRef]
- Wallace, T.C.; Barton, M.; Wilson, W.E. Silver & silver-bearing minerals. Rocks Miner. 1994, 69, 16–38. [Google Scholar]
- Allan, G.; Woodcock, J. A review of the flotation of native gold and electrum. Miner. Eng. 2001, 14, 931–962. [Google Scholar] [CrossRef]
- Quinteros, J.; Wightman, E.; Bradshaw, D. Applying process mineralogy to complex low-grade silver ores. In Proceedings of the XXVII International Mineral Processing Congress-IMPC, Santiago, Chile, 20–24 October 2014. [Google Scholar]
- Wiegers, G. Crystal-structure of low-temperature form of silver selenide. Am. Mineral. 1971, 56, 1882. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Spry, P.G.; Voudouris, P. Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes 2009, 32, 249–263. [Google Scholar]
- Celep, O.; Alp, İ.; Deveci, H. Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach. Hydrometallurgy 2011, 105, 234–239. [Google Scholar] [CrossRef]
- Mueller, A.G.; Muhling, J.R. Silver-rich telluride mineralization at Mount Charlotte and Au–Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia. Miner. Depos. 2013, 48, 295–311. [Google Scholar] [CrossRef]
- Woodcock, J.T.; Henley, K.; Cathro, K. Metallurgy of Gold and Silver with Reference to Other Precious Metals; Course Notes for an Australian Mineral Foundation Workshop Course; Australian Mineral Foundation: Glenside, Australia, 1976. [Google Scholar]
- Sack, R.; Brackebusch, F. Fahlore as an indicator of mineralization temperature and gold fineness. Can. Min. Metall. Bull. 2004, 97, 78–83. [Google Scholar]
- Viñals, J.; Roca, A.; Cruells, M.; Núñez, C. Characterization and cyanidation of Rio Tinto gossan ores. Can. Metall. Q. 1995, 34, 115–122. [Google Scholar] [CrossRef]
- Gasparrini, C. Gold and Other Precious Metals: From Ore to Market; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Klein, C.; Hurlbut, C.S.; Dana, J.D. The 22nd Edition of the Manual of Mineral Science: (After James D. Dana); Wiley: New York, NY, USA, 2002. [Google Scholar]
- Fleischer, M.; Mandarino, J.A. Glossary of Mineral Species, 1995; Mineralogical Record Incorporated: Tucson, AZ, USA, 1995. [Google Scholar]
- Horwood, E.J. Process of Treating and Subsequently Separating Sulfid Ores, &C. U.S. Patent US1020353A, 12 March 1912. [Google Scholar]
- Hoover, T.J. Concentrating Ores by Flotation; Mining Magazine: London, UK, 1914. [Google Scholar]
- Gaudin, A. Flotation; McGraw-Hill Book Co., Inc.: New York, NY, USA, 1957; Volume 463, p. 31. [Google Scholar]
- Fuerstenau, D.W. Fine Particle Flotation. In Proceedings of the International Symposium on Fine Particles Processing, Las Vegas, NV, USA, 24–28 February 1980; pp. 669–705. [Google Scholar]
- King, R. Modeling & Simulation of Mineral Processing Systems Butterworth; Heinemann: Oxford, UK, 2001; 403p. [Google Scholar]
- Wills, B.A.; Napier-Munn, T. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Elsevier Science and Technology: New York, NY, USA, 2006. [Google Scholar]
- Leaver, E.; Woolf, J. Flotation of Silver Minerals; Research Investigation 3436; US Bureau of Mines: Washington, DC, USA, 1939.
- Taggart, A.F. Handbook of Mineral Dressing; Wiley: New York, NY, USA, 1945. [Google Scholar]
- Dorr, J.; Bosqui, F. Cyanidation and Concentration of Gold and Silver Ores, 2nd ed.; McGraw Hill: New York, NY, USA, 1950. [Google Scholar]
- Malhotra, D.; Harris, L. Review of plant practice of flotation of gold and silver ores. In Advances in Flotation Technology; Parekh, B., Miller, J., Eds.; SME: Southfield, MI, USA, 1999; pp. 167–181. [Google Scholar]
- Thompson, P. The selection of flotation reagents via batch flotation test. In Mineral Processing Plant Design, Practice, and Control: Proceedings; SME: Southfield, MI, USA, 2002; Volume 1. [Google Scholar]
- Trahar, W.; Warren, L. The flotability of very fine particles—A review. Int. J. Min. Process. 1976, 3, 103–131. [Google Scholar] [CrossRef]
- Yoon, R.; Luttrell, G. The effect of bubble size on fine particle flotation. Min. Process. Extr. Metall. Rev. 1989, 5, 101–122. [Google Scholar] [CrossRef]
- Dai, Z.; Fornasiero, D.; Ralston, J. Particle–bubble collision models—A review. Adv. Colloid Interface Sci. 2000, 85, 231–256. [Google Scholar] [CrossRef]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Min. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Institute, S. World Silver Survey 2014; The Silver Institute: Washington, DC, USA, 2014. [Google Scholar]
- Petruk, W. Mineralogy and geology of the Zgounder silver deposit in Morocco. Can. Mineral. 1975, 13, 43–54. [Google Scholar]
- El Adnani, M.; Plante, B.; Benzaazoua, M.; Hakkou, R.; Bouzahzah, H. Tailings Weathering and Arsenic Mobility at the Abandoned Zgounder Silver Mine, Morocco. Mine Water Environ. 2016, 35, 508–524. [Google Scholar] [CrossRef]
- Lawrence, R.W.; Scheske, M. A method to calculate the neutralization potential of mining wastes. Environ. Geol. 1997, 32, 100–106. [Google Scholar] [CrossRef]
- Welsby, S.D.D. On the Interpretation of Floatability Using the Bubble Load. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2009. [Google Scholar]
- Vianna, S.M.S. The Effect of Particle Size Collector Coverage and Liberation on the Floatability of Galena Particles in an Ore. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2004. [Google Scholar]
- Thomas, W. Mining Chemical Handbook; Cytec Industries Inc.: Woodland Park, NJ, USA, 2010. [Google Scholar]
1- Effect of pH and Type of Collector | |||||||||
pH | D90 | Methyl Isobutyl Carbonyl | Butyl-Xanthate | Dialkyl Dithiopho-Sphinates | Dithiophosphate | Aero 7518 | Aero 7640 | Alkyl Dithiophosphates | |
Test-1 | 7.5 | 62 µm | 30 g/t | 60 g/t | 100 g/t | ||||
Test-2 | 100 g/t | ||||||||
Test-3 | 100 g/t | ||||||||
Test-4 | 100 g/t | ||||||||
Test-5 | 100 g/t | ||||||||
Test-6 | 9 | 62 µm | 30 g/t | 60 g/t | 100 g/t | ||||
Test-7 | 100 g/t | ||||||||
Test-8 | 100 g/t | ||||||||
Test-9 | 100 g/t | ||||||||
Test-10 | 100 g/t | ||||||||
Test-11 | 10.5 | 62 µm | 30 g/t | 60 g/t | 100 g/t | ||||
Test-12 | 100 g/t | ||||||||
Test-13 | 100 g/t | ||||||||
Test-14 | 100 g/t | ||||||||
Test-15 | 100 g/t | ||||||||
2- Effect of pH and Type of Frother | |||||||||
Parameter | pH | D90 | Methyl Isobutyl Carbonyl | Butyl-Xanthate | Polypropy-lene Glycol | Dithiophosphate | Pin Oil | ||
Test-16 | 7.5 | 62 µm | 30 g/t | 60 g/t | 30 g/t | 100 g/t | 30 g/t | ||
Test-17 | 8.5 | 30 g/t | 30 g/t | 30 g/t | |||||
Test-18 | 9.5 | 30 g/t | 30 g/t | 30 g/t | |||||
Test-19 | 10.5 | 30 g/t | 30 g/t | 30 g/t | |||||
3- Effect of Optimized Collector Dosage | |||||||||
pH | D90 | Methyl Isobutyl Carbonyl | Butyl-Xanthate | Dithiophosphate | |||||
Test-20 | 8.5 | 62 µm | 30 g/t | 40 g/t | 60 g/t | ||||
Test-21 | 60 g/t | 40 g/t | |||||||
Test-22 | 60 g/t | 60 g/t | |||||||
Test-23 | 80 g/t | 60 g/t | |||||||
Test-24 | 80 g/t | 80 g/t | |||||||
Test-25 | 80 g/t | 100 g/t | |||||||
Test-26 | 100 g/t | 100 g/t | |||||||
4- Effect of Solution pH | |||||||||
pH | D90 | Methyl Isobutyl Carbonyl | Butyl-Xanthate | Dithiophosphate | |||||
Test-27 | 5 | 62 µm | 30 g/t | 80 g/t | 80 g/t | ||||
Test-28 | 6 | ||||||||
Test29 | 7 | ||||||||
Test-30 | 8 | ||||||||
Test-31 | 9 | ||||||||
Test-32 | 10 | ||||||||
Test-33 | 11 | ||||||||
5- Effect of Grinding | |||||||||
pH | D90 | Methyl Isobutyl Carbonyl | Butyl-Xanthate | Dithiophosphate | |||||
Test-34 | 8.5 | 62 µm 72 µm 85 µm 96 µm | 30 g/t | 80 g/t | 80 g/t | ||||
Test-35 | |||||||||
Test-36 | |||||||||
Test-37 | |||||||||
6- Effect of Activation | |||||||||
pH | D90 | Methyl Isobutyl Carbonyl | Butyl-xanthate | Dithiophosphate | CuSO4 | ||||
Test-38 | 8.5 | 62 µm | 30 g/t | 80 g/t | 80 g/t | 0 g/t | |||
Test-39 | 100 g/t | ||||||||
Test-40 | 200 g/t | ||||||||
Test-41 | 300 g/t | ||||||||
7- Effect of Sulphidization | |||||||||
pH | D90 | Methyl Isobutyl Carbonyl | Butyl-Xanthate | Dithiophosphate | Na2S | ||||
Test-42 | 8.5 | 62 µm | 30 g/t | 80 g/t | 80 g/t | 0 g/t | |||
Test-43 | 300 g/t | ||||||||
Test-44 | 500 g/t |
Physical Properties | Zgounder Mine Tailings (ZMT) | |
D20 (µm) | 43 | |
D50 (µm) | 74 | |
D80 (µm) | 150 | |
Gs (g/cm3) | 1.6 | |
Chemical Composition | ||
Ag | ppm | 148 |
Au | ppm | <0.1 |
As | ppm | 0.04 |
Sb | ppm | 86 |
Pb | % | 0.24 |
Zn | % | 0.37 |
Fe | % | 5.41 |
Cu | % | 0.08 |
S | % | 0.58 |
C | % | 0.10 |
Static Test | ||
AP (kg CaCO3/t) | 18.1 | |
NP (kg CaCO3/t) | 8.3 | |
NNP (kg CaCO3/t) | −9.8 | |
Acid generation | Uncertain | |
Mineralogical Composition (%) | ||
Quartz | SiO₂ | 14.8 |
Muscovite | KAl2(Si3Al)O10(OHF)2 | 16.2 |
Albite | NaAlSi3O8 | 31.0 |
Chlorite | (Fe,Mg,Al)6(SiAl)4O10(OH)8 | 13.6 |
Actinolite | Ca2(Mg,Fe)5Si8O22(OH)2 | 14.7 |
Orthoclase | KAlSi3O8 | 5.4 |
Rutile | TiO2 | 2.1 |
Sphalerite | ZnS | 0.5 |
Pyrite | FeS2 | 0.5 |
Chalcopyrite | CuFeS2 | 0.1 |
Arsenopyrite | FeAsS | 0.1 |
Galena | PbS | 0.3 |
Dolomite | CaMg(CO3)2 | 0.1 |
Butlerite | Fe(SO4)(OH)2(H2O) | 0.5 |
pH | Butyl-Xanthate | Dithiophosphate | MIBC | D90 | CuSO4 | |
---|---|---|---|---|---|---|
Test-45 | 8.5 | 80 g/t | 80 g/t | 30 g/t | 62 µm | 200 g/t |
Test-46 | ||||||
Test-47 |
Static Test | Zgounder Tailings | Cleaned Tailings |
AP (kg CaCO3/t) | 18.1 | 2.6 |
NP (kg CaCO3/t) | 8.3 | 16.7 |
NNP (kg CaCO3/t) | −9.8 | 14.1 |
Acid generation | Uncertain | Uncertain |
Toxicity Characteristic Leaching Procedure Test | Cleaned Tailings (µg/L) | Regulation Limit (µg/L) * |
As | <DL | 5000 |
Ba | 121 | 100,000 |
Cd | <DL | 1000 |
Cr | <DL | 5000 |
Cu | 416 | - |
Mo | <DL | - |
Pb | 20 | 5000 |
Zn | 6445 | 2000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drif, B.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Recovery of Residual Silver-Bearing Minerals from Low-Grade Tailings by Froth Flotation: The Case of Zgounder Mine, Morocco. Minerals 2018, 8, 273. https://doi.org/10.3390/min8070273
Drif B, Taha Y, Hakkou R, Benzaazoua M. Recovery of Residual Silver-Bearing Minerals from Low-Grade Tailings by Froth Flotation: The Case of Zgounder Mine, Morocco. Minerals. 2018; 8(7):273. https://doi.org/10.3390/min8070273
Chicago/Turabian StyleDrif, Boujemaa, Yassine Taha, Rachid Hakkou, and Mostafa Benzaazoua. 2018. "Recovery of Residual Silver-Bearing Minerals from Low-Grade Tailings by Froth Flotation: The Case of Zgounder Mine, Morocco" Minerals 8, no. 7: 273. https://doi.org/10.3390/min8070273