Shock-Induced Olivine-Ringwoodite Transformation in the Shock Vein of Chondrite GRV053584
Abstract
:1. Introduction
2. Sample and Methods
3. Results
3.1. Shock Vein in the GRV053584
3.2. Shocked Olivine-Ringwoodite and Ringwoodite Clasts
4. Discussion
4.1. Shock Pressure and Temperature of the Shock Vein
4.2. Olivine-Ringwoodite Transformation Process
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sharp, T.G.; DeCarli, P.S. Shock effects in meteorites. In Meteorites and the Early Solar System II; Lauretta, D.S., McSween, H.Y., Jr., Eds.; University of Arizona Press: Tucson, AZ, USA, 2006; pp. 653–677. [Google Scholar]
- Tomioka, N.; Miyahara, M. High-pressure minerals in shocked meteorites. Meteorit. Planet. Sci. 2017, 52, 2017–2039. [Google Scholar] [CrossRef]
- Fritz, J.; Greshake, A.; Fernandes, V.A. Revising the shock classification of meteorites. Meteorit. Planet. Sci. 2017, 52, 1216–1232. [Google Scholar] [CrossRef]
- Clark, S.P.; Ringwood, A. Density distribution and constitution of the mantle. Rev. Geophys. 1964, 2, 35–88. [Google Scholar] [CrossRef]
- Ringwood, A. A model for the upper mantle. J. Geophys. Res. 1962, 67, 857–867. [Google Scholar] [CrossRef]
- Walton, E.L. Shock metamorphism of Elephant Moraine A79001: Implications for olivine–ringwoodite transformation and the complex thermal history of heavily shocked Martian meteorites. Geochim. Cosmochim. Acta 2013, 107, 299–315. [Google Scholar] [CrossRef]
- Miyahara, M.; El Goresy, A.; Ohtani, E.; Nagase, T.; Nishijima, M.; Vashaei, Z.; Ferroir, T.; Gillet, P.; Dubrovinsky, L.; Simionovici, A. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proc. Natl. Acad. Sci. USA 2008, 105, 8542–8547. [Google Scholar] [CrossRef] [PubMed]
- Greshake, A.; Fritz, J.; Böttger, U.; Goran, D. Shear-induced ringwoodite formation in the Martian shergottite Dar al Gani 670. Earth Planet. Sci. Lett. 2013, 375, 383–394. [Google Scholar] [CrossRef]
- Ma, C.; Tschauner, O.; Beckett, J.R.; Liu, Y.; Rossman, G.R.; Sinogeikin, S.V.; Smith, J.S.; Taylor, L.A. Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars. Geochim. Cosmochim. Acta 2016, 184, 240–256. [Google Scholar] [CrossRef]
- Stöffler, D.; Grieve, R. Impactites. In Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences; Fettes, D., Desmons, J., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 82–92, 111–125, 126–242. [Google Scholar]
- Stöffler, D.; Keil, K.; Scott, E.R.D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 1991, 55, 3845–3867. [Google Scholar] [CrossRef]
- Agee, C.B. Phase transformations and seismic structure in the upper mantle and transition zone. Rev. Mineral. Geochem. 1998, 37, 165–203. [Google Scholar]
- Stein, S.; Rubie, D.C. Deep earthquakes in real slabs. Science 1999, 286, 909–910. [Google Scholar] [CrossRef]
- Rubie, D.C.; Ross, C.R. Kinetics of the olivine-spinel transformation in subducting lithosphere: Experimental constraints and implications for deep slab processes. Phys. Earth Planet. Int. 1994, 86, 223–243. [Google Scholar] [CrossRef]
- Tschauner, O.; Ma, C.; Beckett, J.R.; Prescher, C.; Prakapenka, V.B.; Rossman, G.R. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 2014, 346, 1100–1102. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, E.; Suzuki, A.; Kato, T. Flotation of olivine and diamond in mantle melt at high pressure: Implications for fractionation in the deep mantle and ultradeep origin of diamond. In Properties of Earth and Planetary Materials at High Pressure and Temperature; Geophysical Monograph Series; Manghnani, M.H., Yagi, T., Eds.; AGU: Washington, DC, USA, 1998; pp. 227–239. [Google Scholar]
- Ito, E.; Takahashi, E. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. 1989, 94, 10637–10646. [Google Scholar] [CrossRef]
- Ohtani, E. Melting relation of Fe2SiO4 up to about 200 kbar. J. Phys. Earth 1979, 27, 189–208. [Google Scholar] [CrossRef]
- Li, C.M.; Bassett, W.A. The postspinel phases in the Mg2SiO4-Fe2SiO4 system. Science 1975, 187, 66–68. [Google Scholar]
- Kumazawa, M.; Sawamoto, H.; Ohtani, E.; Masaki, K. Postspinel phase of forsterite and evolution of the Earth’s mantle. Nature 1974, 247, 356–358. [Google Scholar] [CrossRef]
- Binns, R.A.; Davis, R.J.; Reed, S.J.B. Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature 1969, 221, 943–944. [Google Scholar] [CrossRef]
- Miyahara, M.; Ohtani, E.; El Goresy, A.; Ozawa, S.; Gillet, P. Phase transition processes of olivine in the shocked Martian meteorite Tissint: Clues to origin of ringwoodite-, bridgmanite- and magnesiowüstite-bearing assemblages. Phys. Earth Planet. Int. 2016, 259, 18–28. [Google Scholar] [CrossRef]
- Pittarello, L.; Ji, G.; Yamaguchi, A.; Schryvers, D.; Debaille, V.; Claeys, P. From olivine to ringwoodite: A TEM study of a complex process. Meteorit. Planet. Sci. 2015, 50, 944–957. [Google Scholar] [CrossRef]
- Xie, Z.; Sharp, T.G. Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth Planet. Sci. Lett. 2007, 254, 433–445. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; El Goresy, A.; Liu, J.; Xie, X. Fracture-related intracrystalline transformation of olivine to ringwoodite in the shocked Sixiangkou meteorite. Meteorit. Planet. Sci. 2006, 41, 731–737. [Google Scholar] [CrossRef]
- Beck, P.; Gillet, P.; El Goresy, A.; Mostefaoui, S. Timescales of shock processes in chondritic and martian meteorites. Nature 2005, 435, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.G.; Xie, Z.; DeCarli, P.S.; Hu, J. A large shock vein in L chondrite Roosevelt County 106: Evidence for a long-duration shock pulse on the L chondrite parent body. Meteorit. Planet. Sci. 2015, 50, 1941–1953. [Google Scholar] [CrossRef]
- Feng, L.; Lin, Y.; Hu, S.; Xu, L.; Miao, B. Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra. Am. Mineral. 2011, 96, 1480–1489. [Google Scholar] [CrossRef]
- Pearson, D.G.; Brenker, F.E.; Nestola, F.; McNeill, J.; Nasdala, L.; Hutchison, M.T.; Matveev, S.; Mather, K.; Silversmit, G.; Schmitz, S.; et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 2014, 507, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Sharp, T.G.; El Goresy, A.; Wopenka, B.; Xie, X. The majorite-pyrope + magnesiowüstite assemblage: Constraints on the history of shock veins in chondrites. Science 1996, 271, 1570–1573. [Google Scholar] [CrossRef]
- Chen, M.; El Goresy, A.; Gillet, P. Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proc. Natl. Acad. Sci. USA 2004, 101, 15033–15037. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, P.J.; Green, H.W.; Coe, R.S. Is the olivine-spinel phase transformation martensitic? Nature 1982, 298, 357–358. [Google Scholar] [CrossRef]
- Sung, C.; Burns, R.G. Kinetics of the olivine→spinel transition: Implications to deep-focus earthquake genesis. Earth Planet. Sci. Lett. 1976, 32, 165–170. [Google Scholar] [CrossRef]
- Mosenfelder, J.L.; Marton, F.C.; Ross, C.R., II; Kerschhofer, L.; Rubie, D.C. Experimental constraints on the depth of olivine metastability in subducting lithosphere. Phys. Earth Planet. Int. 2001, 127, 165–180. [Google Scholar] [CrossRef]
- Burnley, P.C.; Green, H.W. Stress dependence of the mechanism of the olivine-spinel transformation. Nature 1989, 338, 753–756. [Google Scholar] [CrossRef]
- Boland, J.N.; Liu, L. Olivine to spinel transformation in Mg2SiO4 via faulted structures. Nature 1983, 303, 233–235. [Google Scholar] [CrossRef]
- Kerschhofer, L.; Sharp, T.G.; Rubie, D.C. Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions. Science 1996, 274, 79–81. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Xie, X.; Xu, J. A microstructural investigation of natural lamellar ringwoodite in olivine of the shocked Sixiangkou chondrite. Earth Planet. Sci. Lett. 2007, 264, 277–283. [Google Scholar] [CrossRef]
- Miyahara, M.; Ohtani, E.; Kimura, M.; El Goresy, A.; Ozawa, S.; Nagase, T.; Nishijima, M.; Hiraga, K. Coherent and subsequent incoherent ringwoodite growth in olivine of shocked L6 chondrites. Earth Planet. Sci. Lett. 2010, 295, 321–327. [Google Scholar] [CrossRef]
- Rubin, A.E. Maskelynite in asteroidal, lunar and planetary basaltic meteorites: An indicator of shock pressure during impact ejection from their parent bodies. Icarus 2015, 257, 221–229. [Google Scholar] [CrossRef]
- Jaret, S.J.; William, R.W.; Brian, L.P.; Lars, E.; Hanna, N.; Shawn, P.W.; Timothy, D.G. Maskelynite formation via solid-state transformation: Evidence of infrared and X-ray anisotropy. J. Geophys. Res. Planet 2015, 120, 570–587. [Google Scholar] [CrossRef]
- Bunch, T.E.; Cohen, A.J.; Dence, M.R. Natural terrestrial maskelynite. Am. Mineral. 1967, 52, 244–253. [Google Scholar]
- Stöffler, D. Maskelynite confirmed as diaplectic glass: Indication for peak shock pressures below 45 GPa in all Martian meteorites. In Proceedings of the 31st Annual Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000. [Google Scholar]
- Chen, M.; El Goresy, A. The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth Planet. Sci. Lett. 2000, 179, 489–502. [Google Scholar] [CrossRef]
- El Goresy, A.; Gillet, P.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars. Geochim. Cosmochim. Acta 2013, 101, 233–262. [Google Scholar] [CrossRef]
- Fritz, J.; Wünnemann, K.; Greshake, A.; Fernandes, V.A.S.M.; Boettger, U.; Hornemann, U. Shock pressure calibration for Lunar plagioclase. In Proceedings of the 42nd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2011. [Google Scholar]
- Gibbons, R.V.; Ahrens, T.J. Effects of shock pressures on calcic plagioclase. Phys. Chem. Miner. 1977, 1, 95–107. [Google Scholar] [CrossRef]
- Gillet, P.; Chen, M.; Dubrovinsky, L.; El Goresy, A. Natural NaAlSi3O8-Hollandite in the Shocked Sixiangkou Meteorite. Science 2000, 287, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.G.; El Gorsey, A. High-pressure phase transitions of the feldspars, and further characterization of lingunite. Int. Geol. Rew. 2007, 49, 854–860. [Google Scholar] [CrossRef]
- Liu, L. High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet. Sci. Lett. 1978, 37, 438–444. [Google Scholar] [CrossRef]
- Walton, E.L.; McCarthy, S. Mechanisms of ringwoodite formation in shocked meteorites: Evidence from L5 chondrite Dhofar 1970. Meteorit. Planet. Sci. 2017, 52, 762–776. [Google Scholar] [CrossRef]
- Liu, M.; Kerschhofer, L.; Mosenfeldaenr, J.L.; Rubie, D.C. The effect of strain energy on growth rates during the olivine-spinel transformation and implications for olivine metastability in subducting slabs. J. Geophys. Res. Sol. 1998, 103, 23897–23909. [Google Scholar] [CrossRef]
- Xie, Z.; Sharp, T.G.; DeCarli, P.S. Ringwoodite rims around olivine cores in shock-induced melt veins of an antarctic chondrite: Mechanisms of transformation and Fe-Mg difussion. In Proceedings of the 73rd Annual Meteoritical Society Meeting, New York, NY, USA, 26–30 July 2010. [Google Scholar]
- Tomkins, A.G. What metal-troilite textures can tell us about post-impact metamorphism in chondrite meteorites. Meteorit. Planet. Sci. 2009, 44, 1133–1149. [Google Scholar] [CrossRef]
- Katsura, T.; Ito, E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 1989, 94, 15663–15670. [Google Scholar] [CrossRef]
Oxide | Ol-Rwd Fragment 1 | Ol-Rwd Fragment 2 | Host Olivine | Maskelynite | ||
---|---|---|---|---|---|---|
Rim | Core | Rim | Core | |||
SiO2 | 37.53 | 40.87 | 35.83 | 41.15 | 39.09 | 67.71 |
TiO2 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | - |
Al2O3 | 0.47 | 0.00 | 0.05 | 0.01 | 0.00 | 22.73 |
FeO | 32.49 | 10.35 | 36.65 | 10.29 | 20.60 | 1.23 |
MgO | 30.18 | 48.69 | 27.01 | 48.32 | 40.11 | 0.23 |
MnO | 0.06 | 0.39 | 0.01 | 0.17 | 0.47 | 0.05 |
CaO | 0.13 | 0.03 | 0.00 | 0.04 | 0.00 | 2.34 |
NiO | 0.07 | 0.17 | 0.01 | 0.00 | 0.04 | - |
Na2O | - | - | - | - | 5.91 | |
K2O | - | - | - | - | 0.44 | |
Total | 100.94 | 100.49 | 99.56 | 99.97 | 100.30 | 100.64 |
Fa (mol %) | 38 | 11 | 43 | 11 | 22 | An = 17 |
Oxide | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 36.72 | 40.10 | 39.53 | 39.23 | 39.46 | 39.86 | 39.59 | 38.75 | 38.33 | 39.76 |
TiO2 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 |
Al2O3 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 1.47 |
FeO | 35.43 | 14.09 | 18.09 | 18.60 | 18.24 | 15.11 | 17.35 | 22.26 | 24.88 | 28.03 |
MgO | 27.76 | 45.57 | 42.41 | 41.87 | 42.19 | 45.09 | 43.29 | 39.49 | 37.16 | 26.49 |
MnO | 0.14 | 0.46 | 0.47 | 0.50 | 0.48 | 0.48 | 0.44 | 0.41 | 0.37 | 0.52 |
NiO | 0.22 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.19 |
CaO | 0.10 | 0.02 | 0.02 | 0.02 | 0.03 | 0.01 | 0.04 | 0.02 | 0.03 | 0.64 |
Total | 100.78 | 100.24 | 100.51 | 100.23 | 100.40 | 100.54 | 100.72 | 100.93 | 100.78 | 98.13 |
Fa (mol %) | 42 | 15 | 19 | 20 | 20 | 16 | 18 | 24 | 27 | 37 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Liao, Z.; Hursthouse, A.; Dai, D. Shock-Induced Olivine-Ringwoodite Transformation in the Shock Vein of Chondrite GRV053584. Minerals 2018, 8, 139. https://doi.org/10.3390/min8040139
Yin F, Liao Z, Hursthouse A, Dai D. Shock-Induced Olivine-Ringwoodite Transformation in the Shock Vein of Chondrite GRV053584. Minerals. 2018; 8(4):139. https://doi.org/10.3390/min8040139
Chicago/Turabian StyleYin, Feng, Zhiwei Liao, Andrew Hursthouse, and Deqiu Dai. 2018. "Shock-Induced Olivine-Ringwoodite Transformation in the Shock Vein of Chondrite GRV053584" Minerals 8, no. 4: 139. https://doi.org/10.3390/min8040139