Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Analytical Procedures
4. Results
4.1. Mineral Phases and Clay Species in the Studied Sample
4.2. Modes of Occurrence of Clay Minerals
4.3. Abundances of Clay Minerals
5. Discussions
5.1. Volcanic Ash Control on Modes of Occurrence of Clay Assemblages
5.2. Implications for Paleo-Diagenetic Temperature
5.3. Origin of the Micro-Crystalline Quartz Associated with Mixed Layer I/S
6. Conclusions
- (1)
- The clay minerals in the Nb(Ta)-Zr(Hf)-REE-Ga mineralized beds mainly comprise I/S, kaolinite, and berthierine. Generally, I/S is the most abundant species among the clay minerals while the contents of kaolinite and berthierine vary greatly. Angular berthierine particles and vermicular kaolinite occur within the I/S groundmass, while a small proportion of berthierine occurs as colloidal infillings coexisting with I/S in plant cells or in the fractures of vermicular kaolinite.
- (2)
- The modes of occurrence of kaolinite and berthierine verify a volcanic origin for the studied samples. Vermicular kaolinite and the angular berthierine are probably in situ alteration products of volcanic ashes. I/S is the product of illitization of volcanic-ash originated smectite.
- (3)
- Indicated by the presence of berthierine and the ordering of the I/S, the paleo-diagenetic temperature reached ca. 180 °C, but was generally within 100–160 °C.
- (4)
- The authigenic micro-crystalline quartz coexisting with I/S is probably the result of illitization of smectite during the diagenetic process.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dai, S.; Zhou, Y.; Zhang, M.; Wang, X.; Wang, J.; Song, X.; Jiang, Y.; Luo, Y.; Song, Z.; Yang, Z.; Ren, D. A new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the Late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Dai, S.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Seredin, V.V.; Li, D.; Zhang, M.; Hower, J.C.; Ward, C.R.; Wang, X.; Zhao, L.; et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. J. China Coal Soc. 2014, 39, 1707–1715. (In Chinese) [Google Scholar]
- Geology Mineral Industry Standard of P.R. China: Specifications for Rare Metal Mineral Exploration; DZ/T 0203-2002; Geological Press: Beijing, China, 2002. (In Chinese)
- Committee of National Resources. Reference Handbook for Mineral Industry Requirements; Geological Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Geology Mineral Industry Standard of P.R. China: Specifications for Rare Earth Mineral Exploration; DZ/T 0204-2002; Geological Press: Beijing, China, 2002. (In Chinese)
- Zhou, Y. The synsedimentary alkalinity-volcanic ash derived tonsteins of early Longtan age in southwestern China. Coal Geol. Explor. 1999, 27, 5–9. (In Chinese) [Google Scholar]
- Zhou, Y.; Bohor, B.F.; Ren, Y. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou provinces, China. Int. J. Coal Geol. 2000, 44, 305–324. [Google Scholar] [CrossRef]
- Ali, J.R.; Fitton, J.G.; Herzberg, C. Emeishan large igneous province (SW china) and the mantle-plume up-doming hypothesis. J. Geol. Soc. 2010, 167, 953–959. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.-G.; Chung, S.-L.; Xiao, L.; Wang, Y. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet. Sci. Lett. 2003, 213, 391–405. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.-L.; Jahn, B.-M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalt in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Chung, S.L.; Jahn, B.M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology 1995, 23, 889–892. [Google Scholar] [CrossRef]
- Xu, Y.; He, B.; Luo, Z.; Liu, H. Large igneous provinces in China and mantle plume: An overview and perspective. Bull. Mineral. Petrol. Geochem. 2013, 32, 25–39. (In Chinese) [Google Scholar]
- China Coal Geology Bureau. Sedimentary Environments and Coal Accumulation of Late Permian Coal Formation in Western Guizhou, Southern Sichuan and Eastern Yunnan, China; Chongqing University Press: Chongqing, China, 1996. (In Chinese) [Google Scholar]
- Feng, Z.; Yang, Y.; Jin, Z.; Li, S.; Bao, Z. Lithofacies Paleogeograohy of Permian of South China; China University of Petroleum Press: Dongying, China, 1997. (In Chinese) [Google Scholar]
- Wang, S.; Yin, H. Study in Terrestrial Permian-Triassic Boundary in Eastern Yunnan and Western Guizhou; China University of Geoscience Press: Wuhan, China, 2001. (In Chinese) [Google Scholar]
- Zhang, Z.; Yang, X.; Li, S.; Zhang, Z. Geochemical characteristics of the Xuanwei Formation in West Guizhou: Significance of sedimentary environment and mineralization. Chin. J. Geochem. 2010, 29, 355–364. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.-G.; Huang, X.-L.; Luo, Z.-Y.; Shi, Y.-R.; Yang, Q.-J.; Yu, S.-Y. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet. Sci. Lett. 2007, 255, 306–323. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.-G.; Zhong, Y.-T.; Guan, J.-P. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 2010, 119, 10–19. [Google Scholar] [CrossRef]
- Xu, Y.; He, B.; Chung, S.-L.; Menzies, M.A.; Frey, F.A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 2004, 32, 917–920. [Google Scholar] [CrossRef]
- Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction; SY/T 5163-2010; Petroleum Industrial Publishing House: Beijing, China, 2010. (In Chinese)
- Brindley, G.W. Chemical compositions of berthierines-a review. Clays Clay Miner. 1982, 30, 153–155. [Google Scholar] [CrossRef]
- Rivas-Sanchez, M.; Alva-Valdivia, L.; Arenas-Alatorre, J.; Urrutia-Fucugauchi, J.; Ruiz-Sandoval, M.; Ramos-Molina, M. Berthierine and chamosite hydrothermal: Genetic guides in the Pena Colorada magnetite-bearing ore deposit, Mexico. Earth Planet. Space 2006, 58, 1389–1400. [Google Scholar] [CrossRef]
- Toth, T.A.; Fritz, S.J. An Fe-berthierine from a Cretaceous laterite: Part I. Characterization. Clays Clay Miner. 1997, 45, 564–579. [Google Scholar] [CrossRef]
- Moore, D.; Hughes, R.E. Ordovician and Pennsylvanian berthierine-bearing flint clays. Clays Clay Miner. 2000, 48, 145–149. [Google Scholar] [CrossRef]
- Moore, D.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Zhao, L.; Graham, I. Origin of the alkali tonsteins from southwest china: Implications for alkaline magmatism associated with the waning stages of the emeishan large igneous province. Aust. J. Earth Sci. 2016, 63, 123–128. [Google Scholar] [CrossRef]
- Spears, D.A. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. Int. J. Coal Geol. 2012, 94, 22–31. [Google Scholar] [CrossRef]
- Iijima, A.; Matsumoto, R. Berthierine and chamosite in coal measures of Japan. Clays Clay Miner. 1982, 30, 264–274. [Google Scholar] [CrossRef]
- Dai, S.; Chou, C.-L. Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China. Am. Mineral. 2007, 92, 1253–1261. [Google Scholar] [CrossRef]
- Wang, X.; Dai, S.; Chou, C.-L.; Zhang, M.; Wang, J.; Song, X.; Wang, W.; Jiang, Y.; Zhou, Y.; Ren, D. Mineralogy and geochemistry of Late Permian coals from the Taoshuping Mine, Yunnan province, China: Evidences for the sources of minerals. Int. J. Coal Geol. 2012, 96–97, 49–59. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhou, Y.; Zhang, M.; Song, X.; Song, W.; Zhao, C. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int. J. Coal Geol. 2014, 121, 53–78. [Google Scholar] [CrossRef]
- Dai, S.; Tian, L.; Chou, C.-L.; Zhou, Y.; Zhang, M.; Zhao, L.; Wang, J.; Yang, Z.; Cao, H.; Ren, D. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuanwei, Yunnan, China: Occurrence and origin of quartz and chamosite. Int. J. Coal Geol. 2008, 76, 318–327. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Y.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.; Zhao, C.; Tian, H.; Zou, J. Revisiting the Late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Bohor, B.F.; Triplehorn, D.M. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. Geol. Soc. Am. Spec. Pap. 1993, 285, 1–44. [Google Scholar]
- Deconinck, J.-F.; Crasquin, S.; Bruneau, L.; Pellenard, P.; Baudin, F.; Feng, Q. Diagenesis of clay minerals and K-bentonites in Late Permian/Early Triassic sediments of the Sichuan Basin (Chaotian section, central China). J. Asian Earth Sci. 2014, 81, 28–37. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. Int. J. Coal Geol. 2012, 94, 94–110. [Google Scholar] [CrossRef]
- Ren, D. Coal Petrology of China; China University of Mining and Technology Press: Xuzhou, China, 1996. (In Chinese) [Google Scholar]
- Wang, X.; Zhang, M.; Zhang, W.; Wang, J.; Zhou, Y.; Song, X.; Li, T.; Li, X.; Liu, H.; Zhao, L. Occurrence and origins of minerals in mixed-layer illite/smectite-rich coals of the Late Permian age from the Changxing Mine, eastern Yunnan, China. Int. J. Coal Geol. 2012, 102, 26–34. [Google Scholar] [CrossRef]
- Spears, D.A.; Duff, P.M.D. Kaolinite and mixed-layer illite–smectite in lower cretaceous bentonites from the peace river coalfield, british columbia. Can. J. Earth Sci. 1984, 21, 465–476. [Google Scholar] [CrossRef]
- Pevear, D.R.; Williams, V.E.; Mustoe, G.E. Kaolinite, smectite, and k-rectorite in bentonites: Relation to coal rank at tulameen, british columbia. Clays Clay Miner. 1980, 28, 241–254. [Google Scholar] [CrossRef]
- Reinink-Smith, L.M. Mineral assemblages of volcanic and detrital partings in tertiary coal beds. Clays Clay Miner. 1990, 38, 97–108. [Google Scholar] [CrossRef]
- Pellenard, P.; Deconinck, J.-F.; Huff, W.D.; Thierry, J.; Marchand, D.; Fortwengler, D.; Trouiller, A. Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France. Sedimentology 2003, 50, 1035–1060. [Google Scholar] [CrossRef]
- Deconinck, J.-F.; Amédro, F.; Baudin, F.; Godet, A.; Pellenard, P.; Robaszynski, F.; Zimmerlin, I. Late cretaceous paleoenvironments expressed by the clay mineralogy of cenomanian-campanian chalks from the east of the paris basin. Cretac. Res. 2005, 26, 171–179. [Google Scholar] [CrossRef]
- Vázquez, M.; Nieto, F.; Morata, D.; Droguett, B.; Carrillo-Rosua, F.J.; Morales, S. Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: An XRD and HRTEM-AEM study. J. Volcanol. Geotherm. Res. 2014, 282, 43–59. [Google Scholar] [CrossRef]
- Somelar, P.; Kirsimäe, K.; Środoń, J. Mixed-layer illite-smectite in the Kinnekulle K-bentonite, northern Baltic Basin. Clay Miner. 2009, 44, 455–468. [Google Scholar] [CrossRef]
- Hoffman, J.; Hower, J. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, USA. SEPM Spec. Publ. 1979, 26, 55–79. [Google Scholar]
- Susilawati, R.; Ward, C.R. Metamorphism of mineral matter in coal from the Bukit Asam deposit, South Sumatra, Indonesia. Int. J. Coal Geol. 2006, 68, 171–195. [Google Scholar] [CrossRef]
- Uysal, I.T.; Glikson, M.; Golding, S.D.; Audsley, F. The thermal history of the Bowen Basin, Queensland, Australia: Vitrinite reflectance and clay mineralogy of Late Permian coal measures. Tectonophysics 2000, 323, 105–129. [Google Scholar] [CrossRef]
- Abid, I.A.; Hesse, R.; Harper, J.D. Variations in mixed-layer illite/smectite diagenesis in the rift and post-rift sediments of the Jeanne d’Arc Basin, Grand Banks offshore Newfoundland, Canada. Can. J. Earth Sci. 2004, 41, 401–429. [Google Scholar] [CrossRef]
- Schegg, R.; Leu, W. Clay mineral diagenesis and thermal history of the Thonex Well, western Swiss Molasse Basin. Clays Clay Miner. 1996, 44, 693–705. [Google Scholar] [CrossRef]
- Środoń, J.; Clauer, N.; Huff, W.; Dudek, T.; Banaś, M. K-Ar dating of the Lower Paleozoic K-bentonites from the Baltic Basin and the Baltic Shield: Implications for the role of temperature and time in the illitization of smectite. Clay Miner. 2009, 44, 361–387. [Google Scholar] [CrossRef]
- Hornibrook, E.R.; Longstaffe, F.J. Berthierine from the Lower Cretaceous Clearwater Formation, Alberta, Canada. Clays Clay Miner. 1996, 44, 1–21. [Google Scholar] [CrossRef]
- Jahren, J.S.; Aagaard, P. Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Miner. 1989, 24, 157–170. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O'Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99. [Google Scholar] [CrossRef]
- Środoń, J. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu. Rev. Earth and Planet. Sci. 1999, 27, 19–53. [Google Scholar] [CrossRef]
- Hower, J.; Eslinger, E.V.; Hower, M.E.; Perry, E.A. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 1976, 87, 725–737. [Google Scholar] [CrossRef]
- Peltonen, C.; Marcussen, Ø.; Bjørlykke, K.; Jahren, J. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties. Mar. Pet. Geol. 2009, 26, 887–898. [Google Scholar] [CrossRef]
- Thyberg, B.; Jahren, J.; Winje, T.; Bjørlykke, K.; Faleide, J.I.; Marcussen, Ø. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals. Mar. Pet. Geol. 2010, 27, 1752–1764. [Google Scholar] [CrossRef]
Samples | I/S | Kaolinite | Berthierine | Quartz | Anatase | Calcite | Florencite | Siderite | Albite | Hematite | Total Clay | S (%) | Reichweite Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X-1 | 15.2 | 42.6 | 17.5 | 22.8 | 1.9 | - | - | - | - | - | 75.3 | 35 | R1 |
X-2 | 23.5 | 57.7 | 12.3 | 5.2 | 1.4 | - | - | - | - | - | 93.5 | 35 | R1 |
X-3 | 27.0 | 56.5 | 4.7 | 10.3 | 1.6 | - | - | - | - | - | 88.2 | 35 | R1 |
X-4 | 51.9 | 28.4 | 4.3 | 12.8 | 1.6 | 0.9 | - | - | - | - | 84.6 | 30 | R1 |
X-5 | 35.0 | 35.4 | 18.4 | 8.8 | 2.0 | 0.5 | - | - | - | - | 88.8 | 30 | R1 |
X-6 | 22.8 | 39.7 | 22.9 | 13.6 | 1.0 | - | - | - | - | - | 85.4 | 30 | R1 |
X-7 | 54.2 | 12.9 | - | 28.0 | 1.3 | 3.7 | - | - | - | - | 67.1 | 25 | R1 |
X-8 | 45.5 | 29.6 | 11.6 | 11.8 | 0.6 | 0.9 | - | - | - | - | 86.7 | 30 | R1 |
X-9 | 54.5 | 24.2 | 5.1 | 15.7 | 0.5 | - | - | - | - | - | 83.8 | 30 | R1 |
X-10 | 43.9 | 28.2 | 10.1 | 16.9 | 0.9 | - | - | - | - | - | 82.2 | 30 | R1 |
X-11 | 78.4 | 3.9 | 2.1 | 15.5 | 0.2 | - | - | - | - | - | 84.4 | 25 | R1 |
X-12 | 75.9 | 1.2 | 1.5 | 19.8 | - | 1.5 | - | - | - | - | 78.6 | 25 | R1 |
X-13 | 69.6 | 2.6 | 0.7 | 26.2 | 0.8 | - | - | - | - | - | 72.9 | 25 | R1 |
X-14 | 75.7 | 1.2 | 3.9 | 19.2 | - | - | - | - | - | - | 80.8 | 25 | R1 |
X-15 | 77.6 | 4.4 | 2.0 | 16.0 | - | - | - | - | - | - | 84.0 | 25 | R1 |
X-16 | 57.8 | 9.0 | 6.0 | 14.1 | 0.2 | 12.3 | - | 0.7 | - | - | 72.7 | 25 | R1 |
X-17 | 45.1 | 19.2 | 1.4 | 32.3 | 1.1 | 0.8 | - | - | - | - | 65.7 | 20 | R1 |
L-1 | 31.1 | 13.4 | 19.1 | 33.5 | 2.3 | - | 0.5 | - | - | - | 63.6 | 20 | R1 |
L-2 | 52.9 | 0.9 | 16.6 | 25.3 | 1.5 | 2.3 | 0.5 | - | - | - | 70.4 | 20 | R1 |
L-3 | 56.1 | 1.5 | 6.1 | 28.0 | 0.9 | 7.0 | 0.3 | - | - | - | 63.7 | 20 | R1 |
L-4 | 66.3 | 5.3 | 1.4 | 15.2 | 1.1 | 10.0 | 0.6 | - | - | - | 73.0 | 20 | R1 |
L-5 | 20.6 | 8.1 | 10.5 | 52.2 | - | 7.9 | 0.7 | - | - | - | 39.2 | 20 | R1 |
L-6 | 74.0 | 10.0 | 9.9 | 0.8 | 5.3 | - | - | - | - | - | 93.9 | 20 | R1 |
L-7 | 28.0 | 4.1 | 31.9 | 23.6 | 1.4 | - | - | 11.1 | - | - | 64.0 | 20 | R1 |
L-8 | 65.9 | 4.9 | 15.5 | 12.2 | 1.5 | - | - | - | - | - | 86.3 | 20 | R1 |
L-9 | 58.7 | 5.3 | 4.3 | 30.8 | 0.9 | - | - | - | - | - | 68.3 | 20 | R1 |
L-10 | 66.6 | 7.7 | 4.9 | 19.1 | 1.8 | - | - | - | - | - | 79.2 | 20 | R1 |
L-11 | 33.3 | - | 51.9 | 0.4 | 4.5 | - | 0.1 | 6.4 | - | 3.3 | 85.2 | 20 | R1 |
L-12 | 54.1 | - | 32.3 | 0.8 | 6.0 | - | -- | 3.7 | - | 3.1 | 86.4 | 20 | R1 |
L-13 | 69.0 | 11.0 | 6.4 | 7.4 | 2.3 | - | 0.5 | - | - | 3.5 | 86.4 | 25 | R1 |
L-14 | 53.6 | 17.3 | 16.8 | 4.1 | 4.7 | - | 0.7 | - | - | 2.7 | 87.7 | 20 | R1 |
L-15 | 71.7 | 5.9 | 8.8 | 9.1 | 1.8 | - | - | - | - | 2.7 | 86.4 | 20 | R1 |
L-16 | 69.5 | 8.7 | 3.3 | 13.8 | 0.8 | - | 0.7 | - | - | 3.1 | 81.5 | 20 | R1 |
L-17 | 65.5 | 9.8 | 0.4 | 23.3 | 1.0 | - | - | - | - | - | 75.7 | 20 | R1 |
L-18 | 53.2 | 8.0 | 15.8 | 20.3 | 2.7 | - | - | - | - | - | 77.0 | 20 | R1 |
L-19 | 41.9 | 10.4 | 9.2 | 30.6 | 0.1 | - | 0.5 | - | 7.3 | - | 61.5 | 20 | R1 |
L-20 | 64.9 | 3.2 | 13.1 | 15.1 | 3.1 | - | 0.7 | - | - | - | 81.2 | 20 | R1 |
L-21 | 44.1 | 8.6 | 17.9 | 28.1 | 0.8 | - | 0.5 | - | - | - | 70.6 | 20 | R1 |
L-22 | 59.0 | 8.3 | 14.2 | 17.4 | 1.1 | - | - | - | - | - | 81.5 | 15 | R3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Dai, S.; Graham, I.T.; Wang, P. Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. Minerals 2016, 6, 45. https://doi.org/10.3390/min6020045
Zhao L, Dai S, Graham IT, Wang P. Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. Minerals. 2016; 6(2):45. https://doi.org/10.3390/min6020045
Chicago/Turabian StyleZhao, Lixin, Shifeng Dai, Ian T. Graham, and Peipei Wang. 2016. "Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz" Minerals 6, no. 2: 45. https://doi.org/10.3390/min6020045
APA StyleZhao, L., Dai, S., Graham, I. T., & Wang, P. (2016). Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. Minerals, 6(2), 45. https://doi.org/10.3390/min6020045