Divergent Responses of Inorganic and Organic Carbon Sinks to Climate Change over the Recent Decades in Lake Yamzhog Yumco, Tibetan Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. In Situ Measurements
2.4. Laboratory Analysis and Data Processing
3. Results and Discussion
3.1. Sources of Carbon in Lake Yamzhog Yumco Sediments
3.2. Carbon Burial History in Lake Yamzhog Yumco over the Recent Decades and Its Driving Mechanisms
3.3. Implications of Carbon Burial in Lake Yamzhog Yumco
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Kosten, S.; Wallin, M.B.; Tranvik, L.J.; Jeppesen, E.; Roland, F. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat. Geosci. 2015, 8, 933–936. [Google Scholar] [CrossRef]
- Mendonça, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef]
- Heathcote, A.J.; Anderson, N.J.; Prairie, Y.T.; Engstrom, D.R.; del Giorgio, P.A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 2015, 6, 10016. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.J.; Heathcote, A.J.; Engstrom, D.R. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 2020, 6, eaaw2145. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Beek, L.P.H.v.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Zhou, S.; Long, H.; Chen, W.; Qiu, C.; Zhang, C.; Xing, H.; Zhang, J.; Cheng, L.; Zhao, C.; Cheng, J.; et al. Temperature seasonality regulates organic carbon burial in lake. Nat. Commun. 2025, 16, 1049. [Google Scholar] [CrossRef]
- Jia, J.; Sun, K.; Lü, S.; Li, M.; Wang, Y.; Yu, G.; Gao, Y. Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years. Sci. Bull. 2022, 67, 2345–2357. [Google Scholar] [CrossRef]
- Chen, H.; Ju, P.; Zhu, Q.; Xu, X.; Wu, N.; Gao, Y.; Feng, X.; Tian, J.; Niu, S.; Zhang, Y.; et al. Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 701–716. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, G.; Woolway, R.I.; Yang, K.; Wada, Y.; Wang, J.; Crétaux, J.-F. Widespread societal and ecological impacts from projected Tibetan Plateau lake expansion. Nat. Geosci. 2024, 17, 516–523. [Google Scholar] [CrossRef]
- Zhu, L.; Ju, J.; Qiao, B.; Liu, C.; Wang, J.; Yang, R.; Ma, Q.; Guo, L.; Pang, S. Physical and biogeochemical responses of Tibetan Plateau lakes to climate change. Nat. Rev. Earth Environ. 2025, 6, 284–298. [Google Scholar] [CrossRef]
- Du, C.; Zhang, K.; Lin, Q.; Huang, S.; Han, Y.; Ren, J.; Xing, P.; Liu, J.; Taylor, D.; Shen, J. Rapid ecological change outpaces climate warming in Tibetan glacier lakes. Commun. Earth Environ. 2025, 6, 523. [Google Scholar] [CrossRef]
- Liu, D.; Shi, K.; Chen, P.; Yan, N.; Ran, L.; Kutser, T.; Tyler, A.N.; Spyrakos, E.; Woolway, R.I.; Zhang, Y.; et al. Substantial increase of organic carbon storage in Chinese lakes. Nat. Commun. 2024, 15, 8049. [Google Scholar] [CrossRef]
- Meng, X.; Chen, X.; Lin, Q.; Liu, Y.; Ni, Z.; Sun, W.; Zhang, E. Spatiotemporal patterns of organic carbon burial over the last century in Lake Qinghai, the largest lake on the Tibetan Plateau. Sci. Total Environ. 2023, 860, 160449. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Cheng, Y.; Wang, B.; Shi, P.; Duan, K.; Dong, Z. Climate and vegetation codetermine the increased carbon burial rates in Tibetan Plateau lakes during the Holocene. Quat. Sci. Rev. 2023, 310, 108118. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Yue, F.-J.; Zhang, Y.; Wang, Y.; Wu, D.; Liu, D.; Li, F.; Wang, X.; Ji, X. Anthropogenic nitrogen inputs favour increased nitrogen and organic carbon levels in Qinghai–Tibetan Plateau lakes: Evidence from sedimentary records. Water Res. 2025, 277, 123330. [Google Scholar] [CrossRef]
- Chen, X.; Meng, X.; Song, Y.; Zhang, B.; Wan, Z.; Zhou, B.; Zhang, E. Spatial Patterns of Organic and Inorganic Carbon in Lake Qinghai Surficial Sediments and Carbon Burial Estimation. Front. Earth Sci. 2021, 9, 714936. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Yu, R.; Zhao, Y.; Sun, H.; Zhang, Y.; Wu, J.; Du, M.; Li, X.; Wang, X. Dominance of inorganic carbon burial in a closed-basin lake under arid climate. J. Environ. Manag. 2025, 394, 127324. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Xu, H.; Liu, B.; Sheng, E.; Zhao, J.; Yu, K. A large carbon pool in lake sediments over the arid/semiarid region, NW China. Chin. J. Geochem. 2015, 34, 289–298. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, Z.; Gao, M.; Xue, Y. Global lake carbon burial from endorheic zones since the Last Glacial Maximum and the future projection. Innov. Geosci. 2025, 3, 100132. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Wang, N.; Han, Q.; Zhang, X.; Liu, Y.; Xu, L.; Ye, W. Substantial inorganic carbon sink in closed drainage basins globally. Nat. Geosci. 2017, 10, 501–506. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Han, W.; Zhang, E.; Sun, W.; Lin, Q.; Meng, X.; Ni, Z.; Ning, D.; Shen, J. Anthropogenic activities altering the ecosystem in Lake Yamzhog Yumco, southern Qinghai-Tibetan Plateau. Sci. Total Environ. 2023, 904, 166715. [Google Scholar] [CrossRef]
- Guo, C.; Ma, Y.; Meng, H.; Hu, C.; Li, D.; Liu, J.; Luo, C.; Wang, K. Changes in vegetation and environment in Yamzhog Yumco Lake on the southern Tibetan Plateau over past 2000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 501, 30–44. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, F.; Zeng, C.; Wang, L.; Zhang, H.; Xiang, Y.; Yu, Z. Simulation of Runoff through Improved Precipitation: The Case of Yamzho Yumco Lake in the Tibetan Plateau. Water 2023, 15, 490. [Google Scholar] [CrossRef]
- Zhe, M.; Zhang, X.; Wang, B.; Sun, R.; Zheng, D. Hydrochemical regime and its mechanism in Yamzhog Yumco Basin, South Tibet. J. Geogr. Sci. 2017, 27, 1111–1122. [Google Scholar] [CrossRef]
- Song, X.D.; Yang, F.; Wu, H.Y.; Zhang, J.; Li, D.C.; Liu, F.; Zhao, Y.G.; Yang, J.L.; Ju, B.; Cai, C.F.; et al. Significant loss of soil inorganic carbon at the continental scale. Natl. Sci. Rev. 2022, 9, nwab120. [Google Scholar] [CrossRef]
- Sheng, Y.; Shen, J.; Sun, W. Environmental significance of stable isotope composition of carbonates from a sediment core at Lake Yamzho Yumco on the southern Tibetan Plateau over the past 30 years (In Chinese with English abstract). Quat. Sci. 2022, 6, 1624–1632. [Google Scholar]
- Tang, H.; Cidan, Y.; Zeng, C.; Zhang, F. Characteristics of the lake water level changes and influencing factors in Yamzhog Yumco in Tibet from 1974 to 2019 (In Chinese with English abstract). J. Arid Land Resour. Environ. 2021, 35, 83–90. [Google Scholar]
- Cook, H.; Johnson, P.; Matti, J.; Zemmels, I. IV. Methods of Sample Preparation, and X-ray Diffraction Data Analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. Initial Rep. Deep Sea Drill. Proj. 1975, 25, 999–1007. [Google Scholar]
- Meng, X.; Liu, L.; Miao, X.; Zhao, W.; Zhang, E.; Ji, J. Significant influence of Northern Hemisphere high latitude climate on appeared precession rhythm of East Asian summer monsoon after Mid-Brunhes Transition interglacials recorded in the Chinese loess. Catena 2021, 197, 105002. [Google Scholar] [CrossRef]
- Liu, H.; Liu, E.; Yu, Z.; Zhang, E.; Lin, Q.; Wang, R.; Shen, J. Spatio-temporal patterns of organic carbon burial in the sediment of Lake Erhai in China during the past 100 years. J. Lake Sci. 2019, 31, 282–292. [Google Scholar] [CrossRef]
- Yin, J.; Hu, W.; Chen, A.; Li, T.; Zhang, W. Human-caused increases in organic carbon burial in plateau lakes: The response to warming effect. Sci. Total Environ. 2024, 937, 173556. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, E.; Zhang, E.; Nath, B.; Bindler, R.; Liu, J.; Shen, J. Organic carbon burial in a large, deep alpine lake (southwest China) in response to changes in climate, land use and nutrient supply over the past ~100 years. CATENA 2021, 202, 105240. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Tanner, L.H. Carbonates in continental settings: Geochemistry, diagenesis and applications. In Developments in Sedimentology; Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 1–320. [Google Scholar]
- Martín-García, R.; Alonso-Zarza, A.M.; Frisia, S.; Rodríguez-Berriguete, Á.; Drysdale, R.; Hellstrom, J. Effect of aragonite to calcite transformation on the geochemistry and dating accuracy of speleothems. An example from Castañar Cave, Spain. Sediment. Geol. 2019, 383, 41–54. [Google Scholar] [CrossRef]
- Dor, Y.B.; Flax, T.; Levitan, I.; Enzel, Y.; Brauer, A.; Erel, Y. The paleohydrological implications of aragonite precipitation under contrasting climates in the endorheic Dead Sea and its precursors revealed by experimental investigations. Chem. Geol. 2021, 576, 120261. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Tanner, L.H. Carbonates in Continental Settings: Facies, Environments, and Processes; Elsevier: Amsterdam, The Netherlands, 2010; Volume 61. [Google Scholar]
- Meng, X.; Liu, L.; Zhao, W.; He, T.; Chen, J.; Ji, J. Distant Taklimakan Desert as an important source of aeolian deposits on the Chinese Loess Plateau as evidenced by carbonate minerals. Geophys. Res. Lett. 2019, 46, 4854–4862. [Google Scholar] [CrossRef]
- Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef]
- Kaushal, S.; Binford, M.W. Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J. Paleolimnol. 1999, 22, 439–442. [Google Scholar] [CrossRef]
- Müller, A.; Mathesius, U. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 145, 1–16. [Google Scholar] [CrossRef]
- Meyers, P.A.; Lallier-vergés, E. Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates. J. Paleolimnol. 1999, 21, 345–372. [Google Scholar] [CrossRef]
- Huo, S.; Zhang, H.; Wang, J.; Chen, J.; Wu, F. Temperature and precipitation dominates millennium changes of eukaryotic algal communities in Lake Yamzhog Yumco, Southern Tibetan Plateau. Sci. Total Environ. 2022, 829, 154636. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Ma, Y.; Xue, Y.; Piao, S. Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 7540–7552. [Google Scholar] [CrossRef]
- Warrier, A.K.; Shankar, R.; Sandeep, K. Sedimentological and carbonate data evidence for lake level variations during the past 3700 years from a southern Indian lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 397, 52–60. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Sci. Rev. 2003, 60, 261–298. [Google Scholar] [CrossRef]
- Liu, G.; He, S.; Wong, M.L.; Zou, Y.; He, H.; E, C.; Chawchai, S.; Zheng, H.; Li, X. Tropical Pacific Forcing of Hydroclimate in the Source Area of the Yellow River. Geophys. Res. Lett. 2021, 48, e2021GL095876. [Google Scholar] [CrossRef]
- An, Z.; Colman, S.M.; Zhou, W.; Li, X.; Brown, E.T.; Jull, A.J.; Cai, Y.; Huang, Y.; Lu, X.; Chang, H.; et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep. 2012, 2, 619. [Google Scholar] [CrossRef]
- He, Y.; Zhao, C.; Liu, Z.; Wang, H.; Liu, W.; Yu, Z.; Zhao, Y.; Ito, E. Holocene climate controls on water isotopic variations on the northeastern Tibetan Plateau. Chem. Geol. 2016, 440, 239–247. [Google Scholar] [CrossRef]
- Wang, S.; Dou, H. A Directory of Lakes in China; Science Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Jin, Z.D.; Bickle, M.J.; Chapman, H.J.; Yu, J.M.; An, Z.S.; Wang, S.M.; Greaves, M.J. Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid-Pleistocene Indian monsoon and catchment weathering. Boreas 2011, 40, 320–331. [Google Scholar] [CrossRef]
- Radbourne, A.D.; Ryves, D.B.; Anderson, N.J.; Scott, D.R. The historical dependency of organic carbon burial efficiency. Limnol. Oceanogr. 2017, 62, 1480–1497. [Google Scholar] [CrossRef]
- Alcocer, J.; Ruiz-Fernandez, A.C.; Escobar, E.; Perez-Bernal, L.H.; Oseguera, L.A.; Ardiles-Gloria, V. Deposition, burial and sequestration of carbon in an oligotrophic, tropical lake. J. Limnol. 2014, 73, 223–235. [Google Scholar] [CrossRef]
- Fortino, K.; Whalen, S.C.; Johnson, C.R. Relationships between lake transparency, thermocline depth, and sediment oxygen demand in Arctic lakes. Inland Waters 2014, 4, 79–90. [Google Scholar] [CrossRef]
- Bartosiewicz, M.; Przytulska, A.; Lapierre, J.-F.; Laurion, I.; Lehmann, M.F.; Maranger, R. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 2019, 4, 132–144. [Google Scholar] [CrossRef]
- Sobek, S.; Durisch-Kaiser, E.; Zurbrügg, R.; Wongfun, N.; Wessels, M.; Pasche, N.; Wehrli, B. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol. Oceanogr. 2009, 54, 2243–2254. [Google Scholar] [CrossRef]
- Janssen, B.H. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant Soil 1996, 181, 39–45. [Google Scholar] [CrossRef]
- Long, X.; Ji, J.; Barrón, V.; Torrent, J. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction. Quat. Sci. Rev. 2016, 150, 264–277. [Google Scholar] [CrossRef]
- Balsam, W.; Ji, J.; Renock, D.; Deaton, B.C.; Williams, E. Determining hematite content from NUV/Vis/NIR spectra: Limits of detection. Am. Mineral. 2014, 99, 2280–2291. [Google Scholar] [CrossRef]
- Ji, J.; Shen, J.; Balsam, W.; Chen, J.; Liu, L.; Liu, X. Asian monsoon oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet. Sci. Lett. 2005, 233, 61–70. [Google Scholar] [CrossRef]
- Sheppard, R.Y.; Milliken, R.E.; Russell, J.M.; Sklute, E.C.; Dyar, M.D.; Vogel, H.; Melles, M.; Bijaksana, S.; Hasberg, A.K.M.; Morlock, M.A. Iron Mineralogy and Sediment Color in a 100 m Drill Core From Lake Towuti, Indonesia Reflect Catchment and Diagenetic Conditions. Geochem. Geophys. Geosystems 2021, 22, e2020GC009582. [Google Scholar] [CrossRef]
- Gälman, V.; Rydberg, J.; de-Luna, S.S.; Bindler, R.; Renberg, I. Carbon and nitrogen loss rates during aging of lake sediment: Changes over 27 years studied in varved lake sediment. Limnol. Oceanogr. 2008, 53, 1076–1082. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, E.; Liu, E.; Chang, J.; Shen, J. Linkage between Lake Xingkai sediment geochemistry and Asian summer monsoon since the last interglacial period. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 512, 71–79. [Google Scholar] [CrossRef]
- Xu, X.; Wu, C.; Xie, D.; Ma, J. Sources, Migration, Transformation, and Environmental Effects of Organic Carbon in Eutrophic Lakes: A Critical Review. Int. J. Environ. Res. Public Health 2023, 20, 860. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.A.; Jones, I.D.; Thackeray, S.J. Testing the Sensitivity of Phytoplankton Communities to Changes in Water Temperature and Nutrient Load, in a Temperate Lake. Hydrobiologia 2006, 559, 401–411. [Google Scholar] [CrossRef]
- Ventura, M.; Liboriussen, L.; Lauridsen, T.; SØNdergaard, M.; SØNdergaard, M.; Jeppesen, E. Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshw. Biol. 2008, 53, 1434–1452. [Google Scholar] [CrossRef]
- Du, C.; Zhang, K.; Lin, Q.; Huang, S.; Han, Y.; Shen, J. Glacier Meltwater Input and Salinity Decline Promote Algal Growth in a Tibetan Saline Lake. Freshw. Biol. 2025, 70, e70010. [Google Scholar] [CrossRef]
- Karlsson, J.; Jonsson, A.; Jansson, M. Productivity of high-latitude lakes: Climate effect inferred from altitude gradient. Glob. Change Biol. 2005, 11, 710–715. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, E.; Zhang, E.; Bindler, R.; Nath, B.; Zhang, K.; Shen, J. Spatial variation of organic carbon sequestration in large lakes and implications for carbon stock quantification. CATENA 2022, 208, 105768. [Google Scholar] [CrossRef]
- Hollander, D.; McKenzie, J.; Ten Haven, L. A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): Implications for the origin of organic-carbon-rich sediments. Geology 1992, 20, 825–828. [Google Scholar] [CrossRef]
- Scott, D.R. Carbon Fixation, Flux and Burial Efficiency in Two Contrasting Eutrophic Lakes in the UK (Rostherne Mere & Tatton Mere). Ph.D. Thesis, Loughborough University, Loughborough, England, 2014. [Google Scholar]
- Anderson, N.J.; Dietz, R.D.; Engstrom, D.R. Land-use change, not climate, controls organic carbon burial in lakes. Proc. Biol. Sci. 2013, 280, 20131278. [Google Scholar] [CrossRef]
- Dong, X.; Anderson, N.J.; Yang, X.; Chen, X.; Shen, J. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Glob. Change Biol. 2012, 18, 2205–2217. [Google Scholar] [CrossRef]
- Zhang, F.; Yao, S.; Xue, B.; Lu, X.; Gui, Z. Organic carbon burial in Chinese lakes over the past 150 years. Quat. Int. 2017, 438, 94–103. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, B.; Yao, S.; Gui, Z. Organic carbon burial from multi-core records in Hulun Lake, the largest lake in northern China. Quat. Int. 2018, 475, 80–90. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, H.; Chang, H.; Pan, P.; Han, W.; Song, Y.; Sun, W.; Li, R.; Chen, J.; Li, S.; Meng, X. Divergent Responses of Inorganic and Organic Carbon Sinks to Climate Change over the Recent Decades in Lake Yamzhog Yumco, Tibetan Plateau. Minerals 2026, 16, 55. https://doi.org/10.3390/min16010055
Zhou H, Chang H, Pan P, Han W, Song Y, Sun W, Li R, Chen J, Li S, Meng X. Divergent Responses of Inorganic and Organic Carbon Sinks to Climate Change over the Recent Decades in Lake Yamzhog Yumco, Tibetan Plateau. Minerals. 2026; 16(1):55. https://doi.org/10.3390/min16010055
Chicago/Turabian StyleZhou, Han, He Chang, Ping Pan, Wu Han, Yinxian Song, Weiwei Sun, Ruyan Li, Jibang Chen, Shuai Li, and Xianqiang Meng. 2026. "Divergent Responses of Inorganic and Organic Carbon Sinks to Climate Change over the Recent Decades in Lake Yamzhog Yumco, Tibetan Plateau" Minerals 16, no. 1: 55. https://doi.org/10.3390/min16010055
APA StyleZhou, H., Chang, H., Pan, P., Han, W., Song, Y., Sun, W., Li, R., Chen, J., Li, S., & Meng, X. (2026). Divergent Responses of Inorganic and Organic Carbon Sinks to Climate Change over the Recent Decades in Lake Yamzhog Yumco, Tibetan Plateau. Minerals, 16(1), 55. https://doi.org/10.3390/min16010055

