Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review
Abstract
1. Introduction
2. Current Status of Coal-Based Solid Waste Resource Utilization
2.1. Types and Properties of Coal-Based Solid Waste
2.2. Methods of Resource Utilization of Coal-Based Solid Waste
3. Recent Progress in Ceramsite Derived from Coal-Based Solid Wastes
3.1. Present Situation of Ceramsite Preparation
3.2. Feasibility Analysis of Preparing Ceramsite from Coal-Based Solid Waste
3.3. Application Status of Coal-Based Solid Waste Ceramsite
3.3.1. Application in the Field of Construction Materials
3.3.2. Application in the Field of Heavy Metal Immobilization
3.3.3. Application in the Field of Water Treatment
3.4. Challenges and Improvement Strategies for Large-Scale Application of Coal-Based Solid Waste Ceramsite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zou, Y.; Song, Q.; Zhang, P.; Xu, S.; Bao, J.; Xue, S.; Qin, L.; Wang, H.; Lin, L.; Liu, C. Research status of building materials utilization and CO2 curing technology on typical coal-based solid waste: A critical review. J. CO2 Util. 2024, 84, 102860. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Liu, Y.Q.; Sheng, L.X. Preparation of ceramsite from municipal sludge and its application in water treatment: A review. J. Environ. Manag. 2021, 287, 112374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wu, T.; Ren, G.; Zhu, Z.; Gao, Y.; Shi, M.; Ding, S.; Fan, H. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil. J. Clean. Prod. 2023, 404, 136993. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.X.; Li, A.L.; Zhou, N. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control. J. Clean. Prod. 2020, 254, 120113. [Google Scholar] [CrossRef]
- Gao, H.M.; Xu, Z.H.; Zhang, L.; Gao, X.B.; Li, M.L. Preparation and Properties of Porous Ceramsite from Waste Foundry Sand and Ash. Trans. Indian Inst. Met. 2023, 77, 965–973. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Tian, C.; Kong, W.J.; Yang, Y.F.; Zhang, W.Y.; Shao, Y.Q.; Zhang, T.; Lou, Z.Y.; Zhu, Y. Co-utilization of zinc contaminated soil and red mud for high-strength ceramsite: Preparation, zinc immobilization mechanism and environmental safety risks. Process Saf. Environ. Prot. 2023, 170, 491–497. [Google Scholar] [CrossRef]
- Lv, Y.F.; Hu, N.Y.; Ye, Y.C.; Lv, Y.; Liu, H.P. Adsorption of Ag+ with NaCl Modified Ceramsite Prepared from Total Phosphorus Tailings: Performance and Adsorption Mechanism. Water Air Soil. Pollut. 2023, 234, 784. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, R.X.; Wang, X.Y.; Fu, C.S.; Lin, R.S. Construction ceramsite from low-silicon red mud: Design, preparation, and sintering mechanism analysis. Process Saf. Environ. Prot. 2023, 176, 166–179. [Google Scholar] [CrossRef]
- Hu, G.C.; Yan, K.Z.; Gao, J.M.; Cheng, F.Q.; Huo, X.T.; Guo, M.; Zhang, M. A non-fired ceramsite construction material with enhanced lightweight high strength properties. Constr. Build. Mater. 2023, 371, 130771. [Google Scholar] [CrossRef]
- Yaofei, L.; Xingchen, Z.; Ke, Z. Coal gangue in asphalt pavement: A review of applications and performance influence. Case Stud. Constr. Mater. 2024, 20, e03282. [Google Scholar] [CrossRef]
- Liang, Y.C.; Liang, H.D.; Zhu, S.Q. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China. Fuel 2016, 182, 525–530. [Google Scholar] [CrossRef]
- Du, T.; Wang, D.; Bai, Y.; Zhang, Z. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecol. Eng. 2020, 143, 105669. [Google Scholar] [CrossRef]
- Song, W.; Zhang, J.; Li, M.; Yan, H.; Zhou, N.; Yao, Y.; Guo, Y. Underground Disposal of Coal Gangue Backfill in China. Appl. Sci. 2022, 12, 12060. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Y.J.; Huang, Y.; Liao, X.L.; Xu, W.F.; Zhang, T. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicol. Environ. Saf. 2024, 269, 115905. [Google Scholar] [CrossRef]
- Goswami, K.P.; Pakshirajan, K.; Pugazhenthi, G. Process intensification through waste fly ash conversion and application as ceramic membranes: A review. Sci. Total Environ. 2022, 808, 151968. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Xu, J.; Chen, L.; Wang, R.; Zhang, Y.; Wu, J. Hierarchical porous composites derived from coal gasification fine slag for CO2 capture: Role of slag particles in the composites. Fuel 2022, 309, 122334. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, J.; Zhang, Y.; Miao, Z.; Niu, Y.; Guo, F.; Xi, Y. Preparation of hierarchically porous carbon ash composite material from fine slag of coal gasification and ash slag of biomass combustion for CO2 capture. Sep. Purif. Technol. 2024, 330, 125452. [Google Scholar] [CrossRef]
- Su, S.; Tahir, M.H.; Cheng, X.; Zhang, J. Modification and resource utilization of coal gasification slag-based material: A review. J. Environ. Chem. Eng. 2024, 12, 112112. [Google Scholar] [CrossRef]
- Song, Z.L.; Jing, C.M.; Yao, L.S.; Zhao, X.Q.; Sun, J.; Wang, W.L.; Mao, Y.P.; Ma, C.Y. Coal slime hot air/microwave combined drying characteristics and energy analysis. Fuel Process Technol. 2017, 156, 491–499. [Google Scholar] [CrossRef]
- Zhou, K.; Lin, Q.Z.; Hu, H.W.; Shan, F.P.; Fu, W.; Zhang, P.; Wang, X.H.; Wang, C.X. Ignition and combustion behaviors of single coal slime particles in CO2/O2 atmosphere. Combust. Flame 2018, 194, 250–263. [Google Scholar] [CrossRef]
- Li, L.H.; Long, G.C.; Bai, C.N.; Ma, K.L.; Wang, M.; Zhang, S. Utilization of Coal Gangue Aggregate for Railway Roadbed Construction in Practice. Sustainability 2020, 12, 4583. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, L.; Ma, D.; Chai, X.; Lin, C.; Zhang, F. Road Performance Evaluation of Unburned Coal Gangue in Cold Regions. Sustainability 2023, 15, 13915. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, J.; Ma, Z.; Weng, X.; Cheng, L.; Tang, G. Preparation of a High-Silicon ZSM-5 Molecular Sieve Using Only Coal Gangue as the Silicon and Aluminum Sources. Materials 2023, 16, 4338. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ding, C.L.; Yang, H.S.; Zhu, X. Effects of a Cellulose Aerogel Template on the Preparation and Adsorption Properties of Coal Gangue-Based Multistage Porous ZSM-5. Materials 2023, 16, 3896. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhao, G.H.; Guo, L.H.; Zhou, L.Q.; Yuan, K.K. Utilization of coal gangue as coarse aggregates in structural concrete. Constr. Build. Mater. 2021, 268, 121212. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, S.; Guo, L. Application of Coal Gangue as a Coarse Aggregate in Green Concrete Production: A Review. Materials 2021, 14, 6803. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Tu, N.; Liu, T.; Han, Z.Y.; Tu, B.; Zhou, Y. Prediction models for creep and creep recovery of fly ash concrete. Constr. Build. Mater. 2024, 428, 136398. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhu, K.Y.; Zhang, L.; Li, A.M.; Ullah, F.; Chen, C.S.; Huang, J.X.; Zhang, Y.L. Preparation of high-quality glass-ceramics entirely derived from fly ash of municipal solid waste incineration and coal enhanced with pressure pretreatment. J. Clean. Prod. 2021, 324, 129021. [Google Scholar] [CrossRef]
- Savic, V.; Dojcinovic, M.; Topalovic, V.; Cvijovic-Alagic, I.; Stojanovic, J.; Matijasevic, S.; Grujic, S. The effect of sintering temperature on cavitation erosion in glass-ceramics based on coal fly ash. Int. J. Environ. Sci. Technol. 2024, 21, 6065–6074. [Google Scholar] [CrossRef]
- Li, Q.C.; Xiong, T.; Liao, J.; Zhang, Y. Explorations on efficient extraction of uranium with porous coal fly ash aerogels. Sci. Total Environ. 2022, 839, 156365. [Google Scholar] [CrossRef]
- Shi, F.; Liu, J.X.; Song, K.; Wang, Z.Y. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying. J. Non-Cryst. Solids 2010, 356, 2241–2246. [Google Scholar] [CrossRef]
- Panda, D.; Mandal, L.; Barik, J. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. Int. J. Phytorem 2020, 22, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Zhang, J.; Wu, F.; Liu, F.; Zhao, H.; Hu, X.; Zhao, X.; Li, J.; Ju, X.; et al. Stabilization of lead in waste water and farmland soil using modified coal fly ash. J. Clean. Prod. 2021, 314, 127957. [Google Scholar] [CrossRef]
- Gadore, V.; Ahmaruzzaman, M. Tailored fly ash materials: A recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. J. Water Process Eng. 2021, 41, 101910. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, L.; Wang, X.Z.; Wu, C.Y.; Liu, J.Z.; Li, J.B.; Lu, Z.J.; Song, S.X.; Zhu, J.; Montes, M.L.; et al. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. Environ. Sci. Pollut. Res. 2023, 30, 109266–109282. [Google Scholar] [CrossRef]
- Ji, Z.C.; Song, G.L.; Yang, Z.; Xiao, Y.; Yang, X.T.; Wang, C.; Zhang, X.S. Effect of post-combustion air distribution on NOx original emission and combustion characteristics of 75 t/h coal slime circulating fluidized bed boiler. J. Energy Inst. 2021, 99, 154–160. [Google Scholar] [CrossRef]
- Yang, X.T.; Song, G.L.; Yang, Z.; Wang, C.; Ji, Z.C.; Zhang, X.S. Combustion and NOx Emission Characteristics of Coal Slime Solid Waste at Different Feeding Positions. J. Therm. Sci. 2023, 32, 2351–2360. [Google Scholar] [CrossRef]
- Song, G.L.; Xiao, Y.; Yang, Z.; Yang, X.T.; Lyu, Q.G.; Zhang, X.S.; Pan, Q.B. Operating characteristics and ultra-low NOx emission of 75 t/h coal slime circulating fluidized bed boiler with post-combustion technology. Fuel 2021, 292, 120276. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, S.; Zhao, P.; Zhang, S.; Feng, N.; Lan, L.; Zhang, X.; Sun, Y.; Li, Y.; Ma, Y. Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China. Appl. Sci. 2020, 10, 2694. [Google Scholar] [CrossRef]
- Zhang, R.M.; Li, X.A.; Zhang, K.; Wang, P.F.; Xue, P.F.; Zhang, H.L. Research on the Application of Coal Gasification Slag in Soil Improvement. Processes 2022, 10, 2690. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiang, Y.; Jiao, Y.; Wang, L. Effect of sludge amino acid–modified magnetic coal gasification slag on plant growth, metal availability, and soil enzyme activity. J. Soil. Water Conserv. 2020, 75, 515. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, Z.; Wang, H.; Huang, J.; Luo, X.; Xu, F. Experimental research on mechanical and impact properties of lightweight aggregate fiber shotcrete. Constr. Build. Mater. 2022, 333, 127402. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Xiao, M.; Cui, C.; Liu, H. Utilization of Marine-Dredged Sediment and Calcium Sulfoaluminate Cement for Preparing Non-Sintered Ceramsites: Properties and Microstructure. J. Mar. Sci. Eng. 2025, 13, 891. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Wang, Y.; Zhao, J. Non-sintered ceramsite from alkali-activated gasification slag for adsorption through the regulation of physical properties and pore structure. J. Clean. Prod. 2024, 477, 143820. [Google Scholar] [CrossRef]
- Pei, J.N.; Pan, X.L.; Qi, Y.F.; Yu, H.Y.; Tu, G.F. Preparation and characterization of ultra-lightweight ceramsite using non-expanded clay and waste sawdust. Constr. Build. Mater. 2022, 346, 128410. [Google Scholar] [CrossRef]
- Li, X.L.; Zeng, H.; Sun, N.; Sun, W.; Tang, H.H.; Wang, L. Preparation of lightweight ceramsite by stone coal leaching slag, feldspar, and pore-forming reagents. Constr. Build. Mater. 2023, 370, 130642. [Google Scholar] [CrossRef]
- Wang, C.Q.; Duan, D.Y.; Huang, D.M.; Chen, Q.; Tu, M.J.; Wu, K.; Wang, D. Lightweight ceramsite made of recycled waste coal gangue & municipal sludge: Particular heavy metals, physical performance and human health. J. Clean. Prod. 2022, 376, 134309. [Google Scholar] [CrossRef]
- Song, B.; Liu, Z.; Li, C.; Zhou, S.; Yang, L.; Chen, Z.; Song, M. Mechanistic insights into the leaching and environmental safety of arsenic in ceramsite prepared from fly ash. Chemosphere 2023, 344, 140292. [Google Scholar] [CrossRef]
- Mi, H.; Yi, L.; Wu, Q.; Xia, J.; Zhang, B. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite. Ceram. Int. 2021, 47, 18218–18229. [Google Scholar] [CrossRef]
- Jiao, Y.W.; Qiao, J.Q.; Jia, R.J.; Wei, P.Y.; Li, Y.Q.; Ke, G.J. The influence of carbon imperfections on the physicochemical characteristics of coal gangue aggregates. Constr. Build. Mater. 2023, 409, 133965. [Google Scholar] [CrossRef]
- Hu, Y.S.; Han, X.Y.; Sun, Z.Z.; Jin, P.; Li, K.L.; Wang, F.K.; Gong, J.W. Study on the Reactivity Activation of Coal Gangue for Efficient Utilization. Materials 2023, 16, 6321. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, Q.X.; Gao, S.; Tang, J.P. Comparative study on mechanical and environmental properties of coal gangue sand concrete. Constr. Build. Mater. 2023, 400, 132646. [Google Scholar] [CrossRef]
- Yu, L.L.; Xia, J.W.; Xia, Z.; Chen, M.W.; Wang, J.; Zhang, Y.H. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate. Constr. Build. Mater. 2022, 338, 127626. [Google Scholar] [CrossRef]
- Jin, Y.X.; Liu, Z.; Han, L.; Zhang, Y.B.; Li, L.; Zhu, S.Y.; Li, Z.P.J.; Wang, D.M. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. J. Hazard. Mater. 2022, 423, 127027. [Google Scholar] [CrossRef]
- Teng, L.M.; Jin, X.; Bu, Y.F.; Ma, J.K.; Liu, Q.C.; Yang, J.; Liu, W.Z.; Yao, L. Facile and fast synthesis of cancrinite-type zeolite from coal fly ash by a novel hot stuffy route. J. Environ. Chem. Eng. 2022, 10, 108369. [Google Scholar] [CrossRef]
- He, D.S.; Chen, B.B.; Tang, Y.; Li, Q.Q.; Zhang, K.C.; Li, Z.L.; Xu, C.M. The enhanced adsorption properties of phosphorus from aqueous solutions using lanthanum modified synthetic zeolites. Green Process. Synth. 2023, 12, 20230106. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chen, T.; Li, H.; Tu, S.C.; Zhang, L.J.; Hao, T.Y.; Yan, B. Mineral phase transition characteristics and its effects on the stabilization of heavy metals in industrial hazardous wastes incineration (IHWI) fly ash via microwave-assisted hydrothermal treatment. Sci. Total Environ. 2023, 877, 162842. [Google Scholar] [CrossRef]
- Li, G.H.; Li, M.; Zhang, X.; Cao, P.X.; Jiang, H.; Luo, J.; Jiang, T. Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal. Int. J. Min. Sci. Technol. 2022, 32, 563–573. [Google Scholar] [CrossRef]
- Wang, L.S.; Wang, Y.X.; Sun, W.; Wang, C.W. Preparation of lightweight and high-strength ceramsite from highly doped coal fly ash. Trans. Nonferr. Met. Soc. China 2023, 33, 3885–3898. [Google Scholar] [CrossRef]
- Chen, C.; Shenoy, S.; Pan, Y.; Sasaki, K.; Tian, Q.; Zhang, H. Mechanical activation of coal gasification slag for one-part geopolymer synthesis by alkali fusion and component additive method. Constr. Build. Mater. 2024, 411, 134585. [Google Scholar] [CrossRef]
- Yang, P.; Suo, Y.; Liu, L.; Qu, H.; Xie, G.; Zhang, C.; Deng, S. Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag. J. Build. Eng. 2022, 62, 105318. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, J.; Xu, S.; Ju, A.; Yuan, W.; Zhang, J.; Wei, C. Enhancing the electrical and thermal conductivity of polypropylene composites through the addition of Sb–SnO2/coal gasification fine slag porous microbead powder. J. Phys. Chem. Solids 2022, 169, 110843. [Google Scholar] [CrossRef]
- Bu, C.M.; Zhu, D.X.; Lu, X.Y.; Liu, L.; Sun, Y.; Yu, L.W.; Zhang, W.T.; Xiao, T. Optimization of the water-cement ratio of rubberized ceramsite concrete. J. Rubber Res. 2023, 26, 27–36. [Google Scholar] [CrossRef]
- Gao, S.; Huang, K.; Chu, W.; Wang, W. Feasibility Study of Pervious Concrete with Ceramsite as Aggregate Considering Mechanical Properties, Permeability, and Durability. Materials 2023, 16, 5127. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Sikora, P.; Kim, D.J.; El Madawy, M.E.; Elrahman, M.A. Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete. Mater. Charact. 2021, 173, 110907. [Google Scholar] [CrossRef]
- Liu, P.; Luo, A.; Liu, L.; Li, Y.L.; Zhang, S.L.; Zhi, W.T.; Pan, D.; Chen, Y.; Yu, Z.W. Study on the preparation and performances analysis of lightweight high strength ceramsite aerated concrete. J. Mater. Res. Technol. 2023, 25, 6672–6683. [Google Scholar] [CrossRef]
- Cao, G.H.; Liu, R.; He, S.H.; Liao, S.J.; Zhang, Z.H.; Liu, J. Freeze-Thaw and Carbonation Resistance Performance of All-Lightweight Shale Ceramsite Concrete. J. Mater. Civ. Eng. 2025, 37, 04025279. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z.; Chen, J.; Shi, G.; Chen, J. Stress overshoot and its evolution of ceramsite concrete with freeze–thaw cycles under impact loading. Eng. Fract. Mech. 2024, 297, 109874. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Fan, L.; Mi, S.; Li, J.; Liu, H.; Peng, S.; Huang, W. Experimental Investigation into Lightweight High Strength Concrete with Shale and Clay Ceramsite for Offshore Structures. Sustainability 2024, 16, 1148. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Z.; Guo, Z.; Chen, H. Experimental study on small eccentric compression performance of RC short columns strengthened by full lightweight ceramsite concrete. J. Build. Eng. 2024, 86, 108714. [Google Scholar] [CrossRef]
- Li, L.X.; Chai, W.; Kang, J.; Liu, J.X.; Xing, J.; Li, G.L.; Zhan, Z.Z. Utilization of graphite tailings and coal gangue in the preparation of foamed ceramics. Int. J. Appl. Ceram. Technol. 2025, 22, e15012. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, H.; Jiang, P.C.; Li, W.J.; Yuan, L.H.; Lin, X.Y.; Yang, X.; Cai, L.Y.; Cheng, G.H.; Wu, Z. Honeycombed pomegranate-like sludge ceramsite particles: Preparation with fly ash floating beads as the pore-forming template and performance optimization. Constr. Build. Mater. 2024, 453, 139017. [Google Scholar] [CrossRef]
- Jia, G.H.; Wang, Y.L.; Yang, F.L.; Ma, Z.B. Preparation of CFB fly ash/sewage sludge ceramsite and the morphological transformation and release properties of sulfur. Constr. Build. Mater. 2023, 373, 130864. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Yang, Q.; Song, J.; Lu, A. Sustainable use of coal gangue and other wastes in lightweight material: Physical-mechanical, environmental security and synergistic mechanisms. Ceram. Int. 2025, 51, 2244–2258. [Google Scholar] [CrossRef]
- Shen, H.X.; Zhou, C.C.; Xu, S.H.; Huang, Y.; Shi, J.Q.; Liu, G.J.; Wu, L.; Dou, C.M. Study on the solidification performance and mechanism of heavy metals by sludge/biomass ash ceramsites, biochar and biomass ash. Environ. Geochem. Health 2024, 46, 78. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Q.; Wang, H.; Yang, L.; Zhu, X.; Lin, S.; Lv, Y.; Zheng, J.; Duan, W.; Liu, J. Crystallization, structure-property evolution, and solidification of heavy metals of glass-ceramics based on copper tailing/coal slag/red mud. J. Non-Cryst. Solids 2024, 646, 123263. [Google Scholar] [CrossRef]
- Yilin, P.; Wenhua, Z.; Yunsheng, Z.; Wanting, Z.; Zaixiang, Z.; Fan, W. Migration and transformation of heavy metals in glass-ceramics and the mechanism of stabilization. Ceram. Int. 2021, 47, 24663–24674. [Google Scholar] [CrossRef]
- Geng, J.; Niu, S.; Han, K.; Wang, Y.; Zhu, J.; Yang, Z.; Liu, J.; Zhang, H.; Sun, X.; Liang, B.; et al. Properties of artificial lightweight aggregates prepared from coal and biomass co-fired fly ashes and sewage sludge fly ash. Ceram. Int. 2024, 50, 28609–28618. [Google Scholar] [CrossRef]
- Peng, C.; Dai, G.; Wang, Y.; Yang, J.; Wang, C.; Jiao, S.; Chen, L.; Duan, C.; Li, P. Preparation of high-strength ceramsite from coal gangue and printing and dyeing sludge: Design strategy and modelling mechanism. Ceram. Int. 2024, 50, 19963–19970. [Google Scholar] [CrossRef]
- Shang, S.; Fan, H.; Li, Y.; Li, L.; Li, Z. Preparation of Lightweight Ceramsite from Solid Waste Using SiC as a Foaming Agent. Materials 2022, 15, 325. [Google Scholar] [CrossRef]
- Zhao, S.W.; Yao, L.Y.; He, H.B.; Zou, Y.P.; Hu, L.; Zhai, Y.J.; Yu, Y.J.; Jia, J.L. Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag. Arch. Environ. Prot. 2019, 45, 84–90. [Google Scholar] [CrossRef]
- Sathinathan, P.; Parab, H.M.; Yusoff, R.; Ibrahim, S.; Vello, V.; Ngoh, G.C. Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review. Renew. Sustain. Energy Rev. 2023, 173, 113096. [Google Scholar] [CrossRef]
- Mohan, S.; Gandhimathi, R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J. Hazard. Mater. 2009, 169, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Wenguang, L.; Yuhuan, S.; Haihan, S.; Shuwu, Z.; Fayuan, W. A novel clay/sludge-based magnetic ceramsite: Preparation and adsorption removal for aqueous Cu(II). Sep. Sci. Technol. 2023, 58, 1565–1582. [Google Scholar] [CrossRef]
- Duan, X.J.; Huang, Y.; Li, Y.; Zhang, W.; Huang, Z.W. Evolution mechanism of pore structure in sintered coal gangue ceramsites. Ceram. Int. 2023, 49, 31385–31395. [Google Scholar] [CrossRef]
- Guo, P.H.; Zhao, Z.K.; Li, Y.K.; Zhang, Y.B.; He, T.; Hou, X.M.; Li, S.Q. Co-utilization of iron ore tailings and coal fly ash for porous ceramsite preparation: Optimization, mechanism, and assessment. J. Environ. Manag. 2023, 348, 119273. [Google Scholar] [CrossRef]
- Xiao, T.T.; Fan, X.Y.; Wang, H.R.; Zeng, Z.L.; Tian, Z.; Zhou, H. Removal of phosphorus from water bodies using high-performance ceramsite prepared from solid wastes. Sep. Purif. Technol. 2024, 342, 126962. [Google Scholar] [CrossRef]
- Wei, H.; Song, B.; Huan, Q.; Song, C.Y.; Wang, S.F.; Song, M. Preparation of iron tailings-based porous ceramsite and its application to lead adsorption: Characteristic and mechanism. Sep. Purif. Technol. 2024, 342, 126839. [Google Scholar] [CrossRef]
- Sun, J.K.; Zhou, C.C.; Shen, H.X.; Du, J.; Li, Q.Z.; Wu, W.T.; Guo, B.L.; Liu, G.J. Green synthesis of ceramsite from industrial wastes and its application in selective adsorption: Performance and mechanism. Environ. Res. 2022, 214, 113786. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Q.H.; Su, Z.; Sheng, S.; Fu, J. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands. J. Clean. Prod. 2018, 175, 572–581. [Google Scholar] [CrossRef]
Raw Material | Utilization Modes | Features | References |
---|---|---|---|
Coal gangue | Subgrade fill material | Exhibits good performance, with dynamic stiffness meeting the requirements for subgrade materials. | [21,22] |
Preparation of molecular sieve | All parameters fully meet the requirements of molecular sieves and exhibit strong adsorption capacity. | [23,24] | |
Concrete coarse aggregate | Lightweight, environmentally friendly, energy-saving and cost-effective. | [25,26] | |
Coal fly ash | Preparation of concrete | Refine pore structure, strengthen long-term mechanical properties, and ameliorate creep behavior. | [27] |
Preparation of glass-ceramics | High compressive strength, low heavy metal leaching concentration, and significant improvement in crystallinity. | [28,29] | |
Preparation of aerogels | The specific surface area and pore volume are relatively large, resulting in good adsorption capacity. | [30,31] | |
Soil conditioner | Improve soil physicochemical properties, increase plant biomass, and enhance metal tolerance. | [32,33] | |
Water treatment adsorbent. | Effectively removes various water pollutants. | [34] | |
Coal slime | Copper tailings modifier | Promotes plant growth and increases the nutrient elements in copper tailings. | [35] |
Secondary combustion in circulating fluidized bed is adopted. | The pollution to the environment is reduced, and the synergistic treatment of organic and inorganic substances in coal slime is realized. | [36,37,38] | |
Coal gasification slag | Porous material | Possesses a large specific surface area, high porosity, and strong adsorption capacity. | [39] |
Environmental remediation materials | Improve soil structure and remediate heavy metal-contaminated soil. | [40,41] |
Types of Coal-Based Solid Waste | Source | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | TiO2 | MgO | Na2O | Citation |
---|---|---|---|---|---|---|---|---|---|---|
Coal gangue | Shanxi | 73.30 | 15.95 | 2.60 | 1.63 | 4.14 | 1.23 | 0.62 | [50] | |
Henan | 60.44 | 25.65 | 3.9 | 4.58 | 2.2 | [51] | ||||
Liaoning | 58.81 | 20.66 | 8.15 | 3.69 | 3.31 | 1.15 | 2.31 | 0.68 | [52] | |
Jiangsu | 61.69 | 19.11 | 4.16 | 2.35 | 3.04 | 0.64 | 2.28 | [53] | ||
Anhui | 58.20 | 32.00 | 3.96 | 1.01 | 1.74 | 1.23 | 0.34 | [54] | ||
Coal fly ash | Guangxi | 52.05 | 29.65 | 6.59 | 3.62 | 2.95 | 0.92 | 1.33 | [55] | |
Hubei | 46.54 | 34.88 | 6.77 | 5.04 | 0.46 | [56] | ||||
Guangdong | 43.34 | 32.19 | 5.30 | 3.55 | 1.01 | 1.84 | 0.50 | 0.26 | [57] | |
Anhui | 54.60 | 32.20 | 3.20 | 1.50 | 0.80 | 1.30 | 0.60 | 0.20 | [58] | |
Guizhou | 46.34 | 20.74 | 13.49 | 2.42 | 1.63 | 1.14 | 1.74 | [59] | ||
Coal gasification slag | Ningxia | 49.35 | 19.01 | 10.06 | 11.38 | 2.20 | 1.57 | 2.41 | 2.15 | [60] |
Shaanxi | 30.94 | 11.01 | 23.22 | 17.19 | 0.61 | 0.83 | 5.58 | [61] | ||
Shanxi | 26.30 | 14.54 | 2.59 | 4.66 | 1.03 | 0.67 | 0.49 | 0.91 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, C.; Zhu, C.; Gong, Z. Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review. Minerals 2025, 15, 948. https://doi.org/10.3390/min15090948
Wang H, Liu C, Zhu C, Gong Z. Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review. Minerals. 2025; 15(9):948. https://doi.org/10.3390/min15090948
Chicago/Turabian StyleWang, Han, Chunfu Liu, Chenyu Zhu, and Zhipeng Gong. 2025. "Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review" Minerals 15, no. 9: 948. https://doi.org/10.3390/min15090948
APA StyleWang, H., Liu, C., Zhu, C., & Gong, Z. (2025). Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review. Minerals, 15(9), 948. https://doi.org/10.3390/min15090948