Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope
Abstract
1. Introduction
2. Geological Background
3. Deposit Geology of the Yanshan Gold Deposit
4. Sampling and Analytical Methods
4.1. LA–ICP–MS Zircon U–Pb Dating
4.2. In Situ S Isotope Analysis
5. Analytical Results
5.1. Zircon U–Pb Age
5.2. Sulfur Isotope Composition
6. Discussion
6.1. Mineralization Age
6.2. Sources of Ore-Forming Material
6.3. Ore Genesis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, R.C.; Li, D.P.; Zhang, W.; Tian, J.X.; Yu, X.W.; Geng, K.; Zhang, Y. The Mixing of Mesozoic Crust-Mantle Magma Is the Key to the Source of Large Amounts of Gold Deposits in the Jiaobei Uplift, China. Acta Petrol. Sin. 2022, 38, 23–40, (In Chinese with English Abstract). [Google Scholar]
- Song, M.-C.; Li, J.; Li, S.-Y.; Ding, Z.-J.; Tan, X.-F.; Zhang, Z.-L.; Wang, S.-J. Late Mesozoic thermal upwelling-extension structure in east Shandong Province and its geodynamic setting. J. Jilin Univ. 2018, 48, 941–964. [Google Scholar]
- Wang, B.; Ding, Z.; Bao, Z.; Song, M.; Zhou, J.; Lv, J.; Wang, S.; Zhang, Q.; Liu, C. Mesozoic magmatic and geodynamic evolution in the Jiaodong Peninsula, China: Implications for the gold and polymetallic mineralization. Minerals 2022, 12, 1073. [Google Scholar] [CrossRef]
- Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambr. Res. 2010, 178, 149–167. [Google Scholar] [CrossRef]
- Zhai, M.-G.; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Liu, J.-H.; Ding, Z.-J.; Wang, X.-J.; Chen, H.; Liu, F.-L. Detrital zircon U-Pb geochronology and Lu-Hf isotopic analysis of the Neoproterozoic Penglai Group and their comparisons with coeval sedimentary strata of the southeastern North China Craton: Provenance, tectonic affinity and implications. J. Geol. Soc. 2020, 177, 855–865. [Google Scholar] [CrossRef]
- Liu, J.-H.; Wang, X.-J.; Chen, H. Intracontinental extension and geodynamic evolution of the Paleoproterozoic Jiao-Liao-Ji belt, North China craton: Insights from coeval A-type granitic and mafic magmatism in eastern Liaoning Province. Geol. Soc. Am. Bull. 2021, 133, 1765–1792. [Google Scholar] [CrossRef]
- Zhao, G.-C.; Sun, M.; Wilde, S.-A.; Li, S.-Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambr. Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Franz, L.; Enkelmann, E.; Jonckheere, R.; Porschke, A.; Hacker, B.-R.; Dong, S.; Zhang, Y. The Sino–Korean–Yangtze suture, the Huwan detachment, and the Paleozoic–Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai–Xinxian–Dabie Mountains. In Ultrahigh-Pressure Metamorphism: Deep Continental Subduction; Hacker, B.-R., McClelland, W.-C., Liou, J.-G., Eds.; Geological Society of America: McLean, VA, USA, 2006; Volume 403, pp. 45–77. [Google Scholar]
- Ratschbacher, L.; Hacker, B.-R.; Calvert, A.; Webb, L.-E.; Grimmer, J.-C.; McWilliams, M.-O.; Ireland, T.; Dong, S.-W.; Hu, J.-M. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics 2003, 366, 1–53. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Zhou, J.-B.; Wu, Y.-B.; Xie, Z. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Int. Geol. Rev. 2005, 47, 851–871. [Google Scholar] [CrossRef]
- Xu, Z.; Zeng, L.; Liu, F.; Yang, J.; Zhang, Z.; McWilliams, M.; Liu, J.-G. Polyphase subduction and exhumation of the Sulu high-pressure–ultrahigh-pressure metamorphic Terrane. In Ultrahigh-Pressure Metamorphism: Deep Continental Subduction; Hacker, B.-R., McClelland, W.-C., Liou, J.-G., Eds.; Geological Society of America: McLean, VA, USA, 2006; Volume 403, pp. 93–114. [Google Scholar]
- Wu, F.-Y.; Xu, Y.-G.; Gao, S.; Zheng, J.-P. Lithospheric thinning and destruction of the North China Craton. Acta Geol. Sin. 2008, 24, 1145–1174. [Google Scholar]
- Zhu, R.-X.; Chen, L.; Wu, F.-Y.; Liu, J.-L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 2011, 54, 789–797. [Google Scholar] [CrossRef]
- Goldfarb, R.-J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.-M.; Bagas, L.; Carranza, E.-J.-M.; Lu, Y.-J. Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry. Mineral. Depos. 2015, 50, 987–1006. [Google Scholar] [CrossRef]
- Zhang, L.; Weinberg, R.-F.; Yang, L.-Q.; Groves, D.-I.; Sai, S.-X.; Matchan, E.; Phillips, D.; Kohn, B.-P.; Miggins, D.-P.; Liu, Y.; et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120 ± 2 Ma during cooling of pregold granite intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Charles, N.; Augier, R.; Gumiaux, C.; Monié, P.; Chen, Y.; Faure, M.; Zhu, R.-X. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia). Gondwana Res. 2013, 24, 412–428. [Google Scholar] [CrossRef]
- Ding, Z.-J.; Sun, F.-Y.; Liu, F.-L.; Liu, J.-H.; Peng, Q.-M.; Ji, P.; Li, B.-L.; Zhang, P.-J. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China. Acta Petrol. Sin. 2015, 31, 3045–3080. [Google Scholar]
- Zhang, L.; Yang, L.-Q.; Wang, Y.; Weinberg, R.-F.; An, P.; Chen, B.-Y. Thermochronologic constrains on the processes of formation and exhumation of the Xinli orogenic gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2017, 81, 140–153. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.-Q.; Weinberg, R.-F.; Groves, D.-I.; Wang, Z.-L.; Li, G.-W.; Liu, Y.; Zhang, C.; Wang, Z.-K. Anatomy of a world-class epizonal orogenic-gold system: A holistic thermochronological analysis of the Xincheng gold deposit, Jiaodong Peninsula, eastern China. Gondwana Res. 2019, 70, 50–70. [Google Scholar] [CrossRef]
- Song, M.-C.; Wang, B.; Song, Y.-X.; Li, J.; Zheng, J.-F.; Li, S.-Y.; Fan, J.-M.; Yang, Z.-L.; He, C.-Y.; Gao, M.-X.; et al. Spatial coupling relationship between faults and gold deposits in the Jiaodong ore concentration area and the effect of thermal doming-extension on mineralisation. Ore Geol. Rev. 2023, 153, 105277. [Google Scholar] [CrossRef]
- Ma, S.X.; Bai, Y.N.; Sun, Y.L.; Shu, J.D. Fluid inclusion characteristics and hydrogen-oxygen isotope study of the Yanshan gold deposit in the Da Liu Hang gold mining area, Penglai, Jiaodong. Acta Geol. Sin. 2020, 94, 3391–3403. [Google Scholar] [CrossRef]
- Zhao, Z.-F.; Zheng, Y.-F.; Zhang, J.; Dai, L.-Q.; Li, Q.; Liu, X. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem. Geol. 2012, 328, 70–88. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Zhao, Z.-F.; Chen, R.-X. Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Compositional inheritance and metamorphic modification. In HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts; Zhang, L., Zhang, Z., Schertl, H.-P., Wei, C., Eds.; The Geological Society of London: London, UK, 2019; Volume 474, pp. 89–132. [Google Scholar] [CrossRef]
- Yang, K.-F.; Fan, H.-R.; Santosh, M. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos 2012, 146–147, 112–127. [Google Scholar] [CrossRef]
- Li, X.-H.; Fan, H.-R.; Hu, F.-F.; Hollings, P.; Yang, K.-F.; Liu, X. Linking lithospheric thinning and magmatic evolution of late Jurassic to early Cretaceous granitoids in the Jiaobei Terrane, southeastern North China Craton. Lithos 2019, 324–325, 280–296. [Google Scholar] [CrossRef]
- Wang, B.; Song, M.-C.; Huo, G.; Xu, Z.-H.; Jiang, L.; Song, Y.-X.; Li, J. Source characteristics and tectonic evolution of Late Mesozoic granites in Jiaodong and their implications for gold mineralization. Acta Petrol. Miner. 2021, 40, 288–320. [Google Scholar]
- Hou, K.J.; Li, Y.H.; Tian, Y.R. In situ U−Pb zircon dating using, laser ablation–multiion counting-ICP–MS. Miner. Deposits 2009, 28, 481–492, (In Chinese with English Abstract). [Google Scholar]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP–MS. In Laser Ablation–ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues; Mineralogical Association Canada Short Course; Sylvester, P., Ed.; Mineralogical Association Canada: Quebec City, QC, Canada, 2008; Volume 40, pp. 308–311. [Google Scholar]
- Ludwig, K.R. User’s manual for Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochrono. Cent. Spec. Publ. 2003, 4, 1–70. [Google Scholar]
- Anderson, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Bao, Z.A.; Chen, L.; Zong, C.L.; Yuan, H.L.; Chen, K.Y.; Dai, M.N. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. Int. J. Mass. Spectrom. 2017, 421, 255–262. [Google Scholar] [CrossRef]
- Yang, Q.; Shang, Q.; Ren, Y.; Yang, Z. Age and Tectonic Setting of Layered Lead–Zinc Ore Bodies in the Xiaohongshilazi Deposit: Constraints from Geochronology and Geochemistry of the Volcanic Rocks in Central Jilin Province, NE China. Minerals 2023, 13, 1371. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, Y.S.; Li, Y.; Hao, Y.J.; Li, J.M. Age and Tectonic Setting of Mesothermal Magmatic Hydrothermal Vein-Type Pb-Zn-(Ag) Mineralization in the Xiaohongshilazi Deposit, Central Jilin Province, Northeast China. Resour. Geol. 2019, 70, 70–88. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.Y.; Bao, Z.A.; Liang, P.; Sun, T.T.; Yuan, H.L. Preparation of standards for in situ sulfur isotope measurement in sulfide using femtosecond laser ablation MC-ICP-MS. J. Anal. At. Spectrom. 2017, 32, 107–116. [Google Scholar] [CrossRef]
- Yuan, H.L.; Liu, X.; Chen, L.; Bao, Z.A.; Chen, K.Y.; Zong, C.L.; Li, X.C.; Qiu, J.W. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers. J. Asian Earth Sci. 2018, 154, 386–396. [Google Scholar] [CrossRef]
- Shang, Q.; Ren, F.; Yang, Q.; Wang, B. In Situ Compositional and Sulfur Isotopic Analysis of Sphalerite from the Erdaodianzi Gold Deposit in Southern Jilin Province, Northeast China. Minerals 2025, 15, 57. [Google Scholar] [CrossRef]
- Tian, J.P.; Li, J.J.; Wu, X.; Fu, C.; Dang, Z.C.; Zhang, P.P.; He, J.T.; Tang, W.L.; Tian, R.C. Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology. Minerals 2023, 13, 1339. [Google Scholar] [CrossRef]
- Hou, M.L.; Jiang, S.Y.; Jiang, Y.H.; Ling, H.F. S-Pb Isotope Geochemistry and Rb-Sr Geochronology of the Penglai Gold Field in the Eastern Shandong Province. Acta Petrol. Sin. 2006, 22, 2525–2533. (In Chinese) [Google Scholar]
- Chen, G.; Sun, F.; Li, Y.; Liu, K. U-Pb Dating, Geochemical Characteristics and Geological Significance of Guojialing Granodiorite in Jiaodong Peninsula. Glob. Geol. 2014, 33, 39–47. (In Chinese) [Google Scholar]
- Luo, X.; Yang, X.; Duan, L.; Sun, W. Geochemical and Geochronological Study of the Gold-Related Guojialing Pluton and Shangzhuang in Jiaobei Block. Acta Geol. Sin. 2014, 88, 1874–1888. (In Chinese) [Google Scholar]
- Wang, Z.L.; Yang, L.Q.; Deng, J.; Santosh, M.; Zhang, H.F.; Liu, Y.; Li, R.H.; Huang, T.; Zheng, X.L.; Zhao, H. Gold-Hosting High Ba-Sr Granitoids in the Xincheng Gold Deposit, Jiaodong Peninsula, East China: Petrogenesis and Tectonic Setting. J. Asian Earth Sci. 2014, 95, 274–299. [Google Scholar] [CrossRef]
- Yang, J.; Chu, M.; Liu, W.; Zhai, M. Geochemistry and Petrogenesis of Guojialing Granodiorites from the Northwestern Peninsula, Eastern China. Acta Petrol. Sin. 2003, 19, 692–700, (In Chinese with English Abstract). [Google Scholar]
- Hu, F.F.; Fan, H.R.; Jiang, X.H.; Li, K.F.; Yang, T. Mernagh Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids 2013, 13, 528–541. [Google Scholar] [CrossRef]
- Zhang, L.C.; Shen, Y.C.; Liu, T.B.; Zeng, G.M.; Li, H.M. Li 40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China. Sci. China Ser. D-Earth Sci. 2003, 46, 708–718. [Google Scholar] [CrossRef]
- Li, J.W.; Vasconcelos, P.M.; Zhang, J.; Zhou, X.J.; Zhang, F.H. Yang 40Ar/39Ar constraints on a temporal link between gold mineralization magmatism continental margin transtension in the Jiaodong gold province eastern China. J. Geol. 2003, 111, 741–751. [Google Scholar] [CrossRef]
- Cai, Y.C.; Fan, H.R.; Santosh, M.; Hu, F.F.; Yang, K.F.; Li, X.H. Decratonic gold mineralization: Evidence from the Shangzhuang gold deposit, eastern North China Craton. Gondwana Res. 2018, 54, 1–22. [Google Scholar] [CrossRef]
- Yang, L.Q.; Guo, L.N.; Wang, Z.L.; Zhao, R.X.; Song, M.C.; Zheng, X.L. Timing and mechanism of gold mineralization at the Wang’ershan gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2017, 88, 491–510. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhou, X.H. Rb–Sr, Sm–Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology 2001, 29, 711–714. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Xu, H.L.; Sun, G.Y. Emplacement ages of the Denggezhuang gold deposit and the Kunyushan granite and their geological implications. Geol. Rev. 1995, 41, 415–425. [Google Scholar]
- Hu, F.F.; Fan, H.R.; Yang, J.H.; Wan, Y.S.; Liu, D.Y.; Zhai, M.G.; Jin, C.W. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chin. Sci. Bull. 2004, 49, 1629–1636. [Google Scholar] [CrossRef]
- Tan, J.; Wei, J.H.; Li, Y.J.; Fu, L.B.; Li, W.J.; Shi, N. Tian Origin and geodynamic significance of fault–hosted massive sulfide gold deposits from the Guocheng–Liaoshang metallogenic belt, eastern Jiaodong Peninsula: Rb–Sr dating, and H–O–S–Pb isotopic constraints. Ore Geol. Rev. 2015, 65, 687–700. [Google Scholar] [CrossRef]
- Li, J.W.; Vasconcelos, P.M.; Zhou, M.F.; Zhao, X.F.; Ma, C.Q. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Econ. Geol. 2006, 101, 1023–1038. [Google Scholar] [CrossRef]
- Zhang, X.O.; Cawood, P.A.; Wilde, S.; Liu, R.Q.; Song, H.L.; Li, L.W.; Snee, W.X. Geology and timing of mineralization at the Cangshang gold deposit, northwestern Jiaodong Peninsula, China. Minera. Depos. 2003, 38, 141–153. [Google Scholar] [CrossRef]
- Feng, K.; Fan, H.R.; Groves, D.I.; Yang, K.F.; Hu, F.F.; Liu, X.; Cai, Y.C. Geochronological and sulfur isotopic evidence for the genesis of the post-magmatic, deeply sourced, and anomalously gold-rich Daliuhang orogenic deposit, Jiaodong, China. Mineral. Depos. 2020, 55, 293–308. [Google Scholar] [CrossRef]
- Zhai, J.P.; Xu, G.P.; Hu, K. Mineral, ore-forming fluid and isotope characteristics of the Qixia gold deposit and their implications. Miner. Depos. 1998, 17, 307–313. [Google Scholar]
- Yang, K.F.; Jiang, P.; Fan, H.R.; Zuo, Y.B.; Yang, Y.H. Tectonic transition from a compressional to extensional metallogenic environment at ∼120Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton. J. Asian Earth Sci. 2018, 160, 408–425. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, J.; Zhao, Y.; Yan, Z.; Zhao, S.; Lu, C.; Liu, X.; Zhang, Y. Metallogenic Mechanism of Ankou Gold Deposit in the Qixia-Penglai Gold Belt, Jiaodong Peninsula, China: Constraints from Sericite Ar-Ar Geochronology, H-O Isotope, and In-Situ Trace Element of Pyrite. Ore Geol. Rev. 2025, 178, 106471. [Google Scholar] [CrossRef]
- Deng, J.; Lü, G.X.; Yang, L.Q.; Guo, T.; Fang, Y.; Shu, B. The Transformation of Tectonic Stress Field and Interfacial Metallogenesis. Acta Geosci. Sin. 1998, 19, 244–250, (In Chinese with English abstract). [Google Scholar]
- Sun, W.D.; Ding, X.; Hu, Y.H.; Li, X.H. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth Planet. Sci. Lett. 2007, 262, 533–542. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 72. [Google Scholar]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic Gold Deposits. Sci. China Earth Sci. 2015, 58, 1523–1537. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Santosh, M.; Li, S. The ‘Jiaodong Type’ Gold Deposits: Characteristics, Origin and Prospecting. Ore Geol. Rev. 2015, 65, 589–611. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, X.; Jedemann, A.; Bayless, R.C.; Deng, H.; Chen, J.; Xiao, K. Evolution of Pyrite Compositions at the Sizhuang Gold Deposit, Jiaodong Peninsula, Eastern China: Implications for the Genesis of Jiaodong-Type Orogenic Gold Mineralization. Minerals 2021, 11, 344. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Liu, X.; Zhang, L.; Yang, L.; Yang, L.; Qiu, K.; Guo, L.; Liang, Y.; Ma, Y. The Formation of the Jiaodong Gold Province. Acta Geol. Sin. (Engl. Ed.) 2022, 96, 1801–1820. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Li, Y.-D.; Geng, A.-K.; Duan, L.-A.; Li, D.-D. Zircon U-Pb Dating of the Shazibu Pluton in the Guocheng Gold Belt, Jiaolai Basin, Shandong Province: Implications for Metallogeny of the Jiaodong Gold Province. China Geol. 2025, 8, 230–232. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Yang, L.; Groves, D.I.; Han, J.; Qiu, K.; Li, D.; Liu, Z.; Zhao, R.; Deng, J. Formation of the Giant Cretaceous Jiaodong-Type Orogenic Gold Province of the North China Craton: A Consequence of Lithospheric Multi-Layer Reworking. Geosci. Front. 2025, 16, 102047. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Song, M.; Wang, J.; Yan, M.; Sun, W. Destruction of the North China Craton Account for the Shijia Gold Deposit in the Jiaodong Peninsula, Eastern China. Ore Geol. Rev. 2025, 181, 106609. [Google Scholar] [CrossRef]
- Wang, L.-G.; Yang, L.-Q.; Yang, W.; Zhi, Y.-B.; Xie, D.; Sun, B.; Zhang, W.; Li, X.-Z.; Wang, Y.-P.; Wang, J.-H. Genesis and Exploration Potential of Gold Deposits in Archean High-Amphibolite Facies Metamorphic Rocks of the Jiaodong Peninsula: Geological and Geochemical Constraints from the Majiayao Gold Deposit. Ore Geol. Rev. 2025, 181, 106596. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Li, H.; Gu, S.-Y.; Whattam, S.A.; Zheng, C.-Y.; Wang, L.-G.; Li, D.-D.; Duan, L.-A. Geochemistry, Geochronology and Fe-Mg-S Isotopic Composition of the Liaoshang Gold Deposit, Jiaodong Peninsula, China: Implications for Ore-Forming Processes and Mineral Exploration. J. Geochem. Explor. 2025, 273, 107738. [Google Scholar] [CrossRef]
- Cai, W.; Song, M.; Santosh, M.; Li, J. The Gold-Telluride Connection: Evidence for Multiple Fluid Pulses in the Jinqingding Telluride-Rich Gold Deposit of Jiaodong Peninsula, Eastern China. Geosci. Front. 2024, 15, 101795. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Zhang, L.; Xue, S.; Liu, X.; Yang, L.; Yang, L.; Qiu, K. Metallogenetic Model of Jiaodong-Type Gold Deposits, Eastern China. Sci. China Earth Sci. 2023, 66, 2287–2310. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Z.-J.; Zhou, J.-B.; Qiu, K.-F.; Sun, F.-Y. Rapid Tectonic Transition, Crust-Mantle Interaction, and Gold Metallogenesis in the Jiaodong Peninsula, Eastern China: Revealed by Early Cretaceous Granitoids and Microgranular Mafic Enclaves. Lithos 2025, 508–509, 108101. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Gu, S.; Whattam, S.A.; Song, M.; Hu, B.; Duan, L.; Zheng, C.; Wu, B. The Xilaokou Carbonate-Sulfide Vein Type Gold Deposit: A Distinct Mineralization in the Giant Jiaodong Gold Province, North China. Ore Geol. Rev. 2024, 173, 106232. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Halassane, N.; Ghaderi, M.; Gu, S.; Wang, Y.; Li, D.-D. Pyrite Geochemistry Reveals the Key Controlling Factors of Large Gold Deposit Formation in Jiaodong Peninsula: A Comparative Study. Ore Geol. Rev. 2024, 165, 105934. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Yang, L.-Q.; Xie, D.; Yang, W.; Li, D.-P.; Feng, T.; Deng, J. Hydrothermal Alteration Processes of Xincheng Gold Deposit Jiaodong Peninsula, China: Constraints from Composition of Hydrothermal Rutile. Minerals 2024, 14, 417. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, Z.; Bo, J.; Ji, P.; Li, T.; Xin, W. In Situ Trace Element and S-Pb Isotope Study of Pyrite from the Denggezhuang Gold Deposit in the Jiaodong Peninsula—Insights into the Occurrence of Gold and the Source of Ore-Forming Materials. Minerals 2024, 14, 158. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, S.; Liu, C.; Gu, B.; Xue, Y. Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes. Minerals 2025, 15, 14. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Rye, R.O.; Ohmoto, H. Sulfur and carbon isotopes and ore genesis: A review. Econ. Geol. 1974, 69, 826–842. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Miner. Geochem. 1986, 16, 491–559. [Google Scholar]
- Ohmoto, H.; Goldhaber, M. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Guo, W.K.; Zeng, Q.D.; Guo, Y.P.; Wang, Y.B.; Zhang, B. Rb–Sr dating of sphalerite and S–Pb isotopic studies of the Xinxing cryptoexplosive breccia Pb–Zn–(Ag) deposit in the southeastern segment of the Lesser Xing’an–Zhangguangcai metallogenic belt, NE China. Ore Geol. Rev. 2018, 99, 75–85. [Google Scholar] [CrossRef]
- Liu, S.J.; Chen, B.; Zheng, J.H.; Bao, C.; Zhao, G.C. Genesis of the Xinfang deposit, Liaodong Peninsula: Insights from fluid inclusions and S-Sr isotopic constraints. J. Earth Sci. 2021, 32, 68–80. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Goldfarb, R.J.; Yuan, W.M.; Weinberg, R.F.; Zhang, R.Z. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 165–178. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, J.-B.; Ding, Z.-J.; Wilde, S.A.; Song, M.-C.; Zhao, T.-Q.; Bao, Z.-Y. Late Mesozoic magmatism and gold metallogeny of the Jiaodong Peninsula: A response to the destruction of the North China Craton. GSA Bull. 2024, 136, 1395–1412. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, Q.D.; Hartwig, E.F.; Wang, Y.B.; Guo, W.K.; Sun, G.T.; Zhou, T.C.; Li, J.P. Genesis of the Wulong gold deposit, northeastern North China Craton: Constrain from fluids, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 2018, 102, 313–337. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Lo, C.H.; Wilde, S.A.; Davis, G.A. Rapid exhumation and cooling of Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. GSA Bull. (Geol. Soc. Am.) 2007, 119, 1405–1414. [Google Scholar] [CrossRef]
- Zhang, L.C.; Shen, Y.C.; Liu, T.B.; Zeng, Q.D.; Li, G.M.; Li, H.M. Gold deposit types and metallogenic systems of Jiaodong region. Miner. Depos. 2002, 21, 779–782. (In Chinese) [Google Scholar]
- Song, M.C.; Li, J.; Yu, X.F.; Song, Y.X.; Ding, Z.J.; Li, S.Y. Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit, China. Solid. Earth Sci. 2021, 6, 385–405. [Google Scholar] [CrossRef]
Ore Bodies | Elevation (m) | Ore Body Shape | Occurrence (°) | Scale | Average Thickness (m) | Average Grade (×10−6) | ||
---|---|---|---|---|---|---|---|---|
Dip Direction | Dip Angle | Length (m) | Oblique Depth (m) | |||||
④-2 | −233~−261 | Vein | 120 | 81 | 20 | 20 | 1.12 | 3.27 |
M3-1 | −247~−313 | Vein | 120 | 85 | 120 | 20 | 0.76 | 3.66 |
M4-1 | −417~−534 | Vein | 120 | 81 | 70 | 80 | 1.12 | 3.13 |
M9-1 | −107 | Vein | 110 | 70 | 20 | 20 | 2.7 | 1.38 |
M1-1 | −362 | Vein | 100 | 54 | 0.34 | 6.74 | ||
M3-2 | −615 | Vein | 120 | 87 | 0.68 | 4.43 | ||
M5-1 | −79 | Vein | 120 | 87 | 0.25 | 31.88 | ||
M6-1 | −107 | Vein | 120 | 82 | 0.47 | 22.85 |
Lithology | Spot Name | Concentrations (ppm) | Ages (Ma) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Th (ppm) | U (ppm) | Th/U | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | ||
Monzogranite | 22GJL01-1 | 150.41 | 336.23 | 0.45 | 0.1546 | 0.0092 | 0.0207 | 0.0004 | 144 | 7 | 130 | 2 |
22GJL01-2 | 186.04 | 350.26 | 0.53 | 0.1439 | 0.0097 | 0.0194 | 0.0003 | 142 | 6 | 127 | 2 | |
22GJL01-3 | 263.13 | 423.92 | 0.62 | 0.1352 | 0.0071 | 0.0203 | 0.0004 | 130 | 6 | 131 | 2 | |
22GJL01-5 | 308.58 | 511.52 | 0.60 | 0.1454 | 0.0087 | 0.0203 | 0.0004 | 137 | 7 | 129 | 2 | |
22GJL01-6 | 91.18 | 154.26 | 0.59 | 0.1626 | 0.0160 | 0.0217 | 0.0005 | 150 | 12 | 137 | 4 | |
22GJL01-7 | 170.61 | 256.47 | 0.67 | 0.1577 | 0.0184 | 0.0214 | 0.0005 | 142 | 12 | 134 | 4 | |
22GJL01-9 | 349.18 | 493.27 | 0.71 | 0.1445 | 0.0073 | 0.0197 | 0.0003 | 136 | 7 | 127 | 2 | |
22GJL01-10 | 238.69 | 401.15 | 0.60 | 0.1423 | 0.0071 | 0.0206 | 0.0003 | 136 | 6 | 130 | 2 | |
22GJL01-11 | 542.50 | 673.23 | 0.81 | 0.1341 | 0.0063 | 0.0201 | 0.0003 | 129 | 5 | 128 | 2 | |
22GJL01-12 | 174.67 | 289.41 | 0.60 | 0.1313 | 0.0099 | 0.0209 | 0.0004 | 126 | 8 | 135 | 3 | |
22GJL01-13 | 240.79 | 417.18 | 0.58 | 0.1550 | 0.0105 | 0.0204 | 0.0004 | 145 | 9 | 134 | 3 | |
22GJL01-14 | 327.87 | 507.82 | 0.65 | 0.1292 | 0.0062 | 0.0201 | 0.0003 | 125 | 6 | 128 | 2 | |
22GJL01-15 | 350.31 | 506.12 | 0.69 | 0.1279 | 0.0057 | 0.0204 | 0.0003 | 124 | 5 | 129 | 2 | |
22GJL01-16 | 192.02 | 248.52 | 0.77 | 0.1378 | 0.0085 | 0.0199 | 0.0004 | 131 | 8 | 130 | 3 | |
22GJL01-17 | 149.27 | 264.31 | 0.56 | 0.1540 | 0.0112 | 0.0208 | 0.0005 | 144 | 8 | 133 | 3 | |
22GJL01-18 | 209.35 | 325.45 | 0.64 | 0.1472 | 0.0076 | 0.0203 | 0.0004 | 137 | 7 | 129 | 2 | |
22GJL01-19 | 386.52 | 525.35 | 0.74 | 0.1333 | 0.0065 | 0.0198 | 0.0003 | 129 | 7 | 126 | 2 | |
22GJL01-20 | 429.69 | 961.58 | 0.45 | 0.1519 | 0.0061 | 0.0216 | 0.0003 | 143 | 5 | 136 | 2 | |
Porphyritic granodiorite | 22GJL02-1 | 238.19 | 372.75 | 0.64 | 0.1463 | 0.0098 | 0.0203 | 0.0005 | 139 | 9 | 130 | 3 |
22GJL02-2 | 326.60 | 529.13 | 0.62 | 0.1361 | 0.0065 | 0.0201 | 0.0003 | 131 | 7 | 127 | 2 | |
22GJL02-3 | 324.92 | 459.16 | 0.71 | 0.1324 | 0.0069 | 0.0202 | 0.0004 | 128 | 7 | 130 | 2 | |
22GJL02-4 | 362.16 | 581.29 | 0.62 | 0.1435 | 0.0071 | 0.0207 | 0.0004 | 137 | 6 | 133 | 2 | |
22GJL02-5 | 346.78 | 425.82 | 0.81 | 0.1356 | 0.0075 | 0.0205 | 0.0004 | 129 | 7 | 129 | 2 | |
22GJL02-6 | 281.34 | 429.89 | 0.65 | 0.1348 | 0.0078 | 0.0201 | 0.0004 | 128 | 6 | 127 | 2 | |
22GJL02-7 | 278.94 | 492.07 | 0.57 | 0.1609 | 0.0099 | 0.0216 | 0.0004 | 151 | 8 | 136 | 3 | |
22GJL02-8 | 188.67 | 359.12 | 0.53 | 0.1449 | 0.0116 | 0.0198 | 0.0005 | 137 | 10 | 126 | 3 | |
22GJL02-9 | 252.61 | 282.33 | 0.89 | 0.1230 | 0.0082 | 0.0198 | 0.0004 | 121 | 7 | 128 | 2 | |
22GJL02-10 | 228.51 | 341.22 | 0.67 | 0.1456 | 0.0115 | 0.0209 | 0.0005 | 136 | 10 | 132 | 3 | |
22GJL02-12 | 371.85 | 545.37 | 0.68 | 0.1441 | 0.0065 | 0.0213 | 0.0003 | 136 | 6 | 136 | 2 | |
22GJL02-13 | 251.77 | 336.25 | 0.75 | 0.1425 | 0.0093 | 0.0199 | 0.0004 | 135 | 8 | 126 | 2 | |
22GJL02-14 | 149.82 | 262.81 | 0.57 | 0.1457 | 0.0126 | 0.0212 | 0.0005 | 137 | 11 | 132 | 3 | |
22GJL02-15 | 263.61 | 417.51 | 0.63 | 0.1535 | 0.0083 | 0.0212 | 0.0004 | 143 | 7 | 132 | 2 | |
22GJL02-16 | 249.69 | 467.80 | 0.53 | 0.1681 | 0.0095 | 0.0225 | 0.0004 | 155 | 7 | 142 | 3 | |
22GJL02-17 | 314.51 | 537.42 | 0.59 | 0.1472 | 0.0068 | 0.0196 | 0.0003 | 141 | 6 | 128 | 2 | |
22GJL02-18 | 275.33 | 420.25 | 0.66 | 0.1385 | 0.0125 | 0.0203 | 0.0005 | 133 | 9 | 134 | 3 | |
22GJL02-19 | 465.32 | 677.56 | 0.69 | 0.1515 | 0.0079 | 0.0219 | 0.0004 | 139 | 7 | 132 | 2 | |
22GJL02-20 | 358.90 | 482.52 | 0.74 | 0.1442 | 0.0085 | 0.0207 | 0.0004 | 136 | 8 | 131 | 2 |
Deposit | Sample | δ34Sv-CDT (‰) | Reference |
---|---|---|---|
Yanshan gold deposit | YS-1 (Py1) | 3.34 | This study |
YS-2 (Py1) | 3.21 | ||
YS-3 (Py1) | 5.35 | ||
YS-4 (Py1) | 5.22 | ||
YS-5 (Py1) | 4.92 | ||
YS-6 (Py1) | 3.52 | ||
YS-7 (Py1) | 3.88 | ||
YS-8 (Py1) | 4.94 | ||
YS-9 (Py1) | 4.14 | ||
YS-10 (Py1) | 3.57 | ||
YS-11 (Py1) | 5.16 | ||
YS-12 (Py2) | 8.88 | ||
YS-13 (Py2) | 7.22 | ||
YS-14 (Py2) | 6.32 | ||
YS-15 (Py2) | 7.71 | ||
YS-16 (Py2) | 8.93 | ||
YS-17 (Py2) | 9.45 | ||
YS-18 (Py2) | 6.75 | ||
YS-19 (Py2) | 7.60 | ||
YS-20 (Py2) | 7.79 | ||
YS-21 (Py2) | 9.77 | ||
Daliuhang gold deposit | SD45B1-1 | 6.81 | [39] |
SD45B1-2 | 5.08 | ||
SD44B1-5 | 6.78 | ||
SD44B1-6 | 6.76 | ||
SD44B1-7 | 6.52 | ||
SD44B1-8 | 5.78 | ||
SD46B1-3 | 6.64 | ||
SD46B1-4 | 6.59 | ||
SD47B1-1 | 4.87 | ||
SD47B1-2 | 4.82 | ||
SD47B1-3 | 4.97 | ||
SD44B1-1 | 6.39 | ||
SD44B1-2 | 6.79 | ||
SD44B1-3 | 6.81 | ||
SD44B1-4 | 5.93 | ||
SD46B1-1 | 7.04 | ||
SD46B1-2 | 6.49 | ||
SD47B1-4 | 5.1 | ||
SD47B1-5 | 6.05 | ||
Heilangou gold deposit | HLI-1 | 7.2 | [40] |
HLI-4 | 6.8 | ||
HLII-2 | 6.7 | ||
HLI-10 | 6.9 | ||
HLII-11 | 9.5 | ||
HLI-21 | 8.0 | ||
HLH-1 | 8.4 | ||
HLH-3 | 6.3 | ||
Hexi gold deposit | HX-11 | 7.6 | [40] |
HX-12 | 7.4 | ||
HX-13 | 7.5 | ||
HX-14 | 8.0 | ||
HX-15 | 8.5 |
Location | Deposit Name | Age(Ma) | Analysis Method | Source(s) |
---|---|---|---|---|
Zhaoyuan-Laizhou gold belt | Dayingezhuang | 119.1 ± 1.2 | Sericite Ar-Ar | [36] |
Sanshandao | 117.6 ± 3.0 | Sericite Rb-Sr | [45] | |
Cangshang | 121.3 ± 0.2 | Sericite Ar-Ar | [46] | |
Jiaojia | 120.5 ± 0.6 | Mscovite and sericite Ar-Ar | [47] | |
119.2 ± 0.2 | ||||
Shangzhuang | 126.2 ± 1.9 | Molybdenite Re-Os | [48] | |
Wang’ershan | 119.2 ± 0.5 | Sericite Ar-Ar | [49] | |
120.7 ± 0.6 | ||||
Xincheng | 120.7 ± 0.2 | Muscovite and sericite Ar-Ar | [47] | |
120.2 ± 0.3 | ||||
Linglong | 122 ± 11 | Pyrite Rb-Sr | [50] | |
122.7 ± 3.3 | ||||
123.0 ± 4.2 | ||||
Muping-Rushan gold belt | Denggezhuang | 118 ± 9 | Sericite Rb-Sr | [51] |
Jinqingding | 117 ± 3 | Hydrothermal zircon U-Pb | [52] | |
Guocheng | 116.2 ± 2.4 | Quartz fluid inclusion Rb-Sr | [53] | |
Liaoshang | 116 | Geological constrain | [53] | |
Pengjiakuang | 120.9 ± 0.4 | Sericite Ar-Ar | [54] | |
119.1 ± 0.2 | ||||
Fayunkuang | 128.49 ± 7.2 | Pyrite Rb-Sr | [55] | |
Penglai-Qixia gold belt | Daliuhang | 120.5 ± 1.7 | Monazite U-Pb | [56] |
Qixia | 125.8 ± 1.7 | Pyrite Rb-Sr | [57] | |
Hushan | 120.0 ± 3.0 | Monazite U-Pb | [58] | |
Ankou | 119.61 ± 0.70 | Sericite Ar-Ar | [59] | |
Heilangou | 120.09 ± 0.71 | Sericite Ar-Ar | ||
Qijiagou | 117.81 ± 0.69 | Sericite Ar-Ar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ding, Z.; Yang, Q.; Bao, Z.; Lv, J.; Bai, Y.; Ma, S.; Zhou, Y. Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope. Minerals 2025, 15, 941. https://doi.org/10.3390/min15090941
Wang B, Ding Z, Yang Q, Bao Z, Lv J, Bai Y, Ma S, Zhou Y. Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope. Minerals. 2025; 15(9):941. https://doi.org/10.3390/min15090941
Chicago/Turabian StyleWang, Bin, Zhengjiang Ding, Qun Yang, Zhongyi Bao, Junyang Lv, Yina Bai, Shunxi Ma, and Yikang Zhou. 2025. "Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope" Minerals 15, no. 9: 941. https://doi.org/10.3390/min15090941
APA StyleWang, B., Ding, Z., Yang, Q., Bao, Z., Lv, J., Bai, Y., Ma, S., & Zhou, Y. (2025). Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope. Minerals, 15(9), 941. https://doi.org/10.3390/min15090941